Single Ventricle/Hypoplastic Left Heart Syndrome and Its Variants: Present and Future Medical and Surgical Management

Ram Emami, MD
Boston Children’s Hospital

Learning Objectives

At the end of this educational activity, participants should be able to

- Identify various forms of single ventricle anatomy
- Outline current medical and surgical management patterns and considerations in single ventricle patients to identify long-term limitations and complications
- List negative prognostic risk factors
- Recognize new treatment strategies and the prospects for the future
Disclosures

• **Faculty Disclosure**
 As a provider accredited by the ACCME, OptumHealth Education requires the disclosure of any relevant financial relationship a faculty member has with the manufacturer(s) of any product discussed in this educational presentation. The faculty reported the following:
 Dr Emani has nothing to disclose.
 Dr Emani does not intend to discuss unapproved/investigative use of commercial products/devices.

• **Staff Disclosures**
 In compliance with the ACCME’s Standards for Commercial Support, employees of OptumHealth Education who have control over content of an activity are required to disclose their relevant financial relationships. No employee has a relevant financial relationship regarding this activity.

Outline

• What is Hypoplastic Left Heart Syndrome?
• Other Single Ventricle Variants
• Current management strategy
• Outcomes
• Ventricular support
• Transplantation
• Strategy to rehabilitate left heart
Cardiac Anatomy 101

Hypoplastic Left Heart Syndrome

[Images of cardiac anatomy and ultrasound]
Small Left Heart

- HLHS
- Critical Aortic stenosis
- Congenital mitral stenosis
- Severely unbalanced AV Canal defect (dominant RV)
- Often have hypoplastic aorta and coarctation

Small Right Heart

- Tricuspid atresia (dominant LV)
- Pulmonary atresia with intact ventricular septum, RV dependant coronary circulation, and hypoplastic right ventricle (dominant LV)
- Severely unbalanced AV Canal defect (dominant LV)
Other Variants

- Double inlet ventricle (dominant LV or RV)
- Straddling AV valve
- L-loop transposition of the great arteries with pulmonary atresia and univentricular hypoplasia
- Double outlet right ventricle with mitral atresia.

Natural History

- Small left heart (HLHS)
 - Depends upon PDA for systemic blood flow
 - As Patent Ductus Arteriosus closes, low blood leads to
 - Renal Failure
 - Intestinal Ischemia
 - Acidosis
 - Mortality
- Small right heart (Pulmonary Atresia)
 - Depends upon PDA for pulmonary blood flow
 - As PDA closes, hypoxemia
- Prostaglandins to reopen PDA
Single Ventricle Palliation

- Goal is to eventually use single ventricle (right or left) to pump to body
- Allow passive drainage of systemic venous blood into pulmonary artery to provide oxygenation
- Resistance of flow through lungs determines timing of surgical approach
 - Very high after birth = Need high pressure to pump blood through lungs

HLHS and small left heart

- Neonate - Stage 1 (Norwood)
- Create unobstructed outflow from ventricle to aorta (through pulmonary valve)
- Augment the aorta
- Ensure coronary blood flow (aortopulmonary connection)
- Create source of pulmonary blood flow (arterial pressure)
 - Innominate artery
 - Ventricle
Small Right Heart

- Neonate - Blalock Taussig shunt to provide pulmonary blood flow
- Do not need aortopulmonary connection
- Shunt thrombosis is major risk
- Balanced circulation important to prevent over circulation or cyanosis
- Goal pulse oximetry sats 80%

Interstage monitoring

- Risk of mortality (10%) in HLHS
- Risk of hypoxia with small right heart
- Home monitoring program improves outcomes
 - Home pulse oximetry
 - Daily weights
 - Regular contact with nurse practitioner
 - Early detection and intervention
Second Stage operation

- Bidirectional Glenn or Hemi Fontan
- 4 – 6 months of age
- Partially directs venous return to lungs
- IVC still drains to heart
- Oxygen levels = 80% still
- Less work load on heart
- Heart catheterization prior to procedure to ensure pulmonary arteries unobstructed

Final Stage

- Fontan Procedure directs IVC blood to pulmonary arteries
- Fenestration to decompress
- Sats 90% until fenestration closed
- Lateral Tunnel vs. Extracardiac
- Pleural effusions postoperatively
Single ventricle palliation - outcomes

- 10-20% mortality following stage 1 (Norwood)
- 50-70% 10 year survival
- 5% require cardiac transplantation
- Role for medical management
 - ACE inhibitors

Long term complications

- Protein losing enteropathy (PLE)
- Plastic bronchitis
- Arrhythmias
- Tricuspid / Mitral regurgitation
- Thrombosis in baffles
- Progressive ventricular dysfunction
- Cirrhosis
Ventricular Assist Device for Single V

- Single ventricle support
- Right heart support is technically difficult
- Currently as Bridge to Transplantation
- Successful in anecdotal cases

Ventricular Assist Devices
Selection of pump size

• Too small
 – May limit filling
 – Inadequate cardiac output
 – need to run very fast *hemolysis

• Too big
 – Hypertension
 – Need to run slow - thrombus

Outcomes

• Patients with congenital heart disease (CHD) are known to have worse outcomes on VAD support than patients without CHD

Blume et al, 2006
Hertzer et al, 2010
Cardiac Transplantation

- Risk of allograft right heart failure
- Overall, transplant improves survival
- PRESEVED ventricular function is associated with poor outcome compared to impaired function

Growth Potential

- Observation – Children have enormous healing and growth capabilities
- Left Ventricle can grow too
- How to stimulate growth?

McElhenney et al. 2005 (CHB)
Staged LV recruitment

Initial Single Ventricle Palliation

↓

Maneuvers to rehabilitate LV

↓

Subsequent biventricular conversion

Operative Strategies

• Flow = Grow
• LV Rehabilitation
 – EFE resection
 – Accessory pulmonary blood flow
 – Restriction of ASD
 – Aortic valve repair
 – Mitral valve repair
• Biventricular conversion procedure
 – Ross procedure
 – Direct re-anastomosis
Atrial septal defect restriction

- ASD allows blood to flow to right heart
- Diverts away from left heart
- Restricting size of communication “forces” blood into LV
- Flow = grow
- Promotes growth of LV

Downside – If pressure builds up in left atrium, lungs can get damaged
- Particularly problematic in single ventricle patients
- Traditionally with single ventricle – HERESY to restrict atrial septum
- If left heart does not grow, then risk of lung injury
Left Heart size by stage

Effect of ASD restriction on growth
LV Recruitment Strategy

- Stage 1 / LH rehab
 - 34 Patients
- Biventricular conversion
 - 12 Patients
- Cardiac Transplantation
 - 1 patient

Future Directions

- Improvement in interstage care of single V patient
- Improve devices for Failing Fontan
- Refine indications for transplantation
- Increased Role for biventricular conversion
- Effect of LV recruitment upon single ventricle function
- Multi Site pacing for dyssynchrony
- Management of the Adult with single ventricle
Thank You!

Questions?

Please direct questions regarding the activity to OptumHealth Education at moreinfo@optumhealtheducation.com