

Current Patient Populations with Rel/Ref HL Relapsed ASHL Primary refractory ASHL Relapsed or primary refractory ESHL treated with full course chemotherapy • or CMT-4 cycles of ABVD and ISRT Relapsed or primary refractory ESHL treated with short course chemotherapy . or 2+2 now with stage III-IV disease Primary Refractory ESHL treated with short course chemotherapy or 2+2 now ٠ with stage III-IV disease Relapsed ESHL treated with short course chemotherapy (3 or 4 cycles of • ABVD) or 2 cycles of ABVD and 20Gy ISRT (2+2) now with stage I-II disease -out of field if radiated Primary Refractory ESHL treated with short course chemotherapy or 2+2 now with stage I-II disease-out of field if radiated Memorial Sloan Ko Cancer Center.

PET and rel/ref HL Maximum of 2 different salvage regimens can be used to achieve PET neg ٠ response - If 2 regimens needed definitely give post ASCT BV 80% of patients with nodal only disease in remission at time of ASCT are • cured - Post-ASCT BV not likely needed Stage IV or EN disease predicts for an unfavorable outcome in PET negative ٠ patients - Post-ASCT BV should be given • Pts with PET-avid disease have <50% cure and if stage IV disease then outcome is poor - All pts with PET avid disease should receive post-ASCT BV Memorial Sloan Ko Cancer Center.

Risk Factors

- Relapsed < 12 months or refractory to frontline therapy
- Best response of PR or SD to most recent salvage therapy
- Extranodal disease at pre-ASCT relapse
- B symptoms at pre-ASCT relapse
- 2 or more prior salvage therapies

eripheral Neuropath	y (SMQ)—BV	/ Arm
 112/167 (67%) patients rep maximum Grade 3 event. 		• •
	Sep 2014	Oct 2015
N = 112	n (%)	n (%)
Resolution or improvement	95 (85)	99 (88)
Complete resolution	66 (59)	74 (66)
 38/112 patients had ongoin 15 are off study and can 23 patients remaining on Of patients remaining on st 17 have maximum Grade 5 have maximum Grade 2 1 has maximum Grade 3 confounding assessment 	no longer be followed study have ongoing tudy with ongoing F 1 2 (patient has ongoing	d for resolution PN PN
SMQ = standardized MedDRA query; includes peripheral st paresthesia, muscular weakness, hypoesthesia, gait disturt hyporeflexia, peroneal nerve palsy, and sensory disturbanc	bance, neuralgia, amyotrophy, decrea	

Stem Cell Harvest and Marrow Engraftment

Median number of apheresis sessions, (range)	2 (1–5)
Median CD34+ cell yield (cells/kg), (range)	4.1 x 10 ⁶ (1.7–11.8)
<2 x 10 ⁶ Cells Collected, n	1 ^a
Plerixafor required after failure to collect/harvest CD34+ cells with first-line agent(s), n	1
Median number of cycles before mobilization (range)	2 (2–6)
Median time (days) to neutrophil engraftment (range)	11 (9–21)
Median time (days) to platelet engraftment (range)	13 (9–39)
^a Patient with 1.7 x10 ^o cells collected was able to undergo transplant with engraftment	

 95% of pts who underwent mobilization (39/41) had successful stem cell collection with first-line agent(s) (G-CSF ± plerixafor)

- 1 pt required rescue plerixafor
- 1 pt underwent bone marrow harvest due to failure of G-CSF (rescue plerixafor not used)

Memorial Sk Cancer Center

- 40 pts underwent transplant
 - 1 pt had disease progression after mobilization and was not transplanted
 - $_{\circ}$ $\,$ 1 pt died from septic shock subsequent to transplant and never engrafted

days	1	2	3	8	q21 days x 2
	1	1	1	t	↓ ↓
sfamide		x			G-CSF
boplatin	x				
oside	x	х	х		
ituximab	х			х	
Dos	e Level		[Day 1 BV Dose	Day 8 BV Dose
	-1			1.8 mg/kg	None
II dose	1			1.2 mg/kg	1.2 mg/kg
	2			1.5 mg/kg	1.5 mg/kg

Efficacy				
	Brentuximab Failure			
	Transplant Failure N = 22	Transplant Ineligible/ Refused N = 9	Total N = 31	
Overall Response Rate	16 (73%)	4 (44%)	20 (65%)	
Complete Remission	3 (14%)	2 (22%)	5 (16%)	
Partial Remission	13 (59%)	2 (22%)	15 (48%)	
Stable Disease	4 (18%)	3 (33%)	7 (23%)	
Progressive Disease	2 (9%)	2 (22%)	4 (13%)	

"ITIS"
 Hypothyroidism Hyperthyroidism Pneumonitis Colitis
 Word of Caution: Do not treat anyone on study with these agents where there is a history of Bleomycin, Radiation, BV or Gemcitabine associated pneumonitis that required Steroid Support
Memorial Stoan Kettering Cancer Center.

Conclusions

- Nivolumab and Pembrolizumab demonstrate promising antitumor activity in patients with heavily pretreated HL
- CR rates are low but waterfall plots are impressive as are response durations
- Acceptable safety and tolerability profile was observed
- Among enrolled patients, PD-L1 expression was observed in 100% of the evaluable samples
- I see very little difference between the agents
- Results support the continued development in patients with HL and phase II results will be reported at ASCO and EHA
 - Nivo-60 pts
 - Pembro- 6o pts

Lymphoma* and Lymphoma Transplant** Services-MSKCC

Memorial Sloan Kettering

- John Gerecitano*
- Paul Hamlin*
- Steve Horwitz*
- Anita Kumar*
- Matthew Matasar*/**
- Alison Moskowitz*
- Craig Moskowitz*/**
- Ariela Noy*
- Lia Palomba*
- Miguel Perales**
- Carol Portlock*
- Craig Sauter**
- David Straus*
- Joachim Yahalom*/**
- Anas Younes*
- Andrew Zelenetz*