

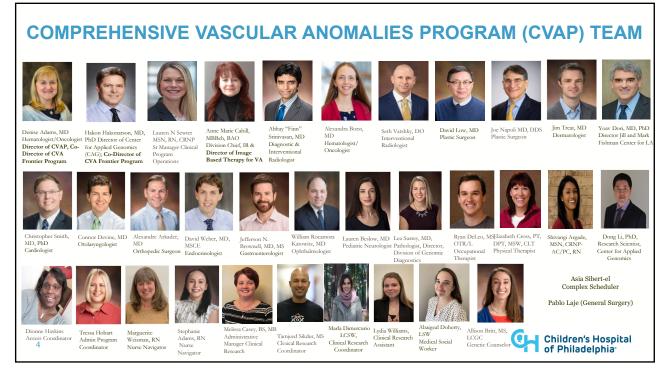
_

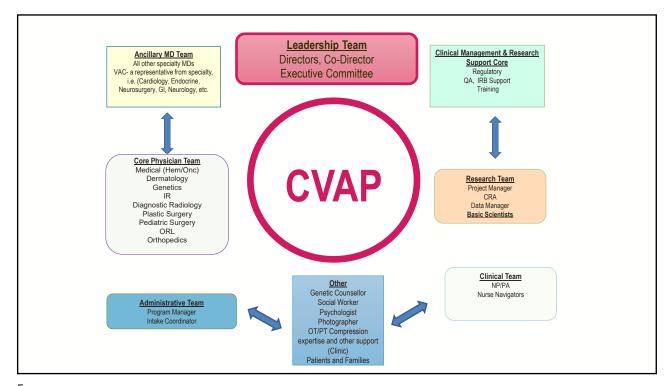
LEARNING OBJECTIVES

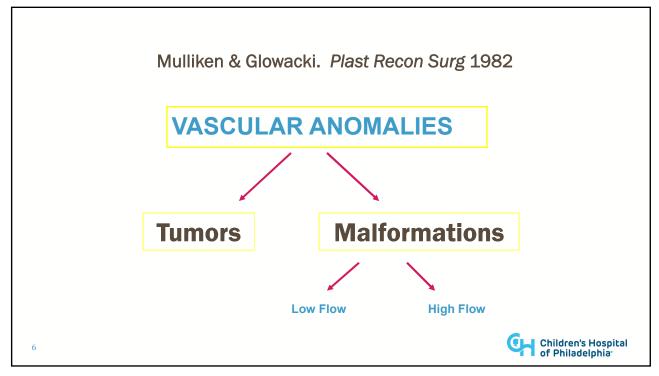
At the end of this educational activity, participants should be able to:

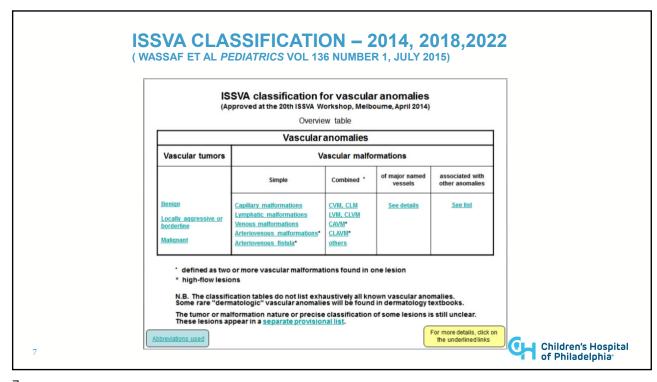
- Describe the diagnostic journey for individuals with kaposiform lymphangiomatosis (KLA) and other lymphatic conditions.
- Explain emerging diagnostic tools and therapies, including clinical trials for KLA and other lymphatic conditions.
- Discuss challenges and barriers in the diagnosis and treatment of KLA as well as the associated physical and mental health issues.
- Incorporate individual and caregiver engagement in shared decision-making.
- Summarize interprofessional team strategies for improving coordination and communication to support the well-being of both the individual and their family/caregiver(s).

OUTLINE

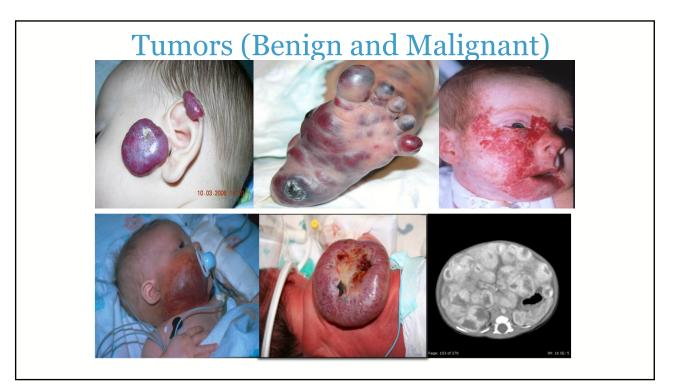

- Comprehensive Vascular Anomalies Program (CVAP)
- Classification of Vascular Anomalies
- A Patient Story
- Complicated Lymphatic Anomalies
- Lessons Learned: The Power of One
- Genotype/Phenotype Discoveries
- Collaboration


3

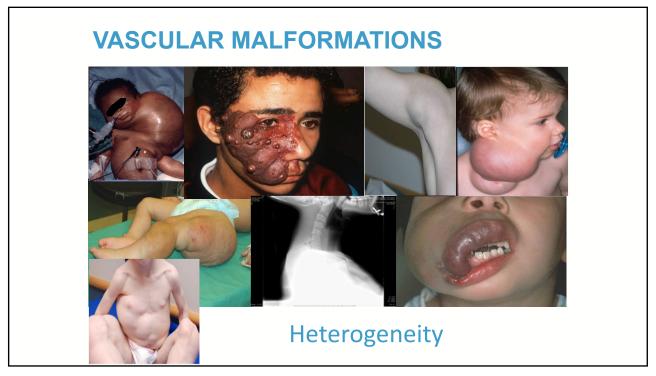

3


Conditions

5


/

IMPROVED CLASSIFICATION


- New Diagnoses
- Anatomical Variants
- Named Syndromes
- Known and Accepted Genetic Causes
- Recently updated in 2018 in Amsterdam

Children's Hospital of Philadelphia

0

9

OUR PROBLEM

What the MD contemplates Phenotype:

- History
- Clinical Exam
- Radiology
- Pathology

Genotype:

- Somatic
- Germline

Why is this difficult

- Rare diagnoses do not fit into a perfect box
- Expertise is not found everywhere
- Lack of training in medical school, nursing school and other allied health professions
- Delay in diagnosis
- Many interventions as there is no standard of practice
- Anxious patients and families searching for answers leading to more stress and anxiety

11

11

LYMPHATIC ANOMALIES

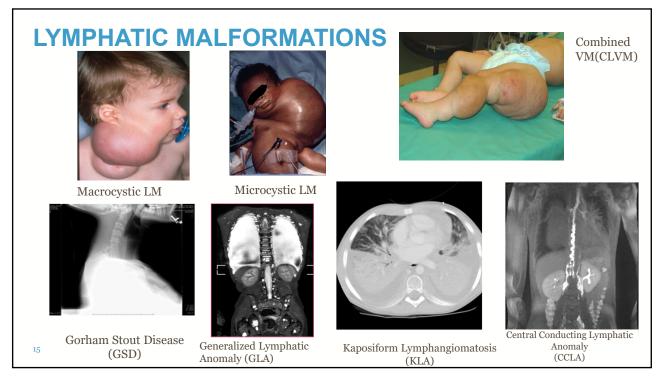
COMPLICATIONS

- Bleeding and infections
- Bone and soft tissue involvement: pain, swelling
- Lymphatic blebs: leakage, bleeding, anemia
- Effusions: respiratory distress, chronic lung disease
- Dilated veins: phlebitis, risk of thrombosis
- Overgrowth: functional issues, pain, orthopedic issues
- Coagulopathy

13

LYMPHATIC TUMORS

- Kaposiform Hemangioendothelioma (KHE)
 - Intermediate malignancy
 - No metastatic potential

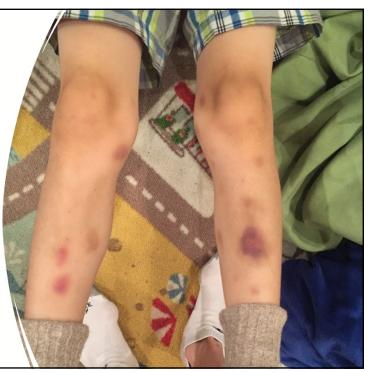


• Malignant

14

15

MICHAEL ALEXANDER PROKOPOWICZ


- Born on May 13, 2009
- 8 lbs. 5 oz.
- · Happy and healthy and super smart

17

CONCERNING SYMPTOMS STARTED AT AGE 5

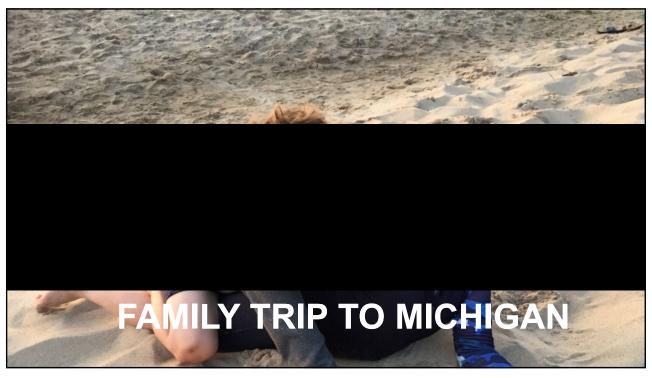
- Fever
- Rash
- Bone pain
- Unexplained swelling in groin and scrotum
- Poor appetite
- Fatigue
- · Unusual bruising

LOOKING FOR AN **EXPLANATION: CONSULTATION WITH SPECIALISTS**

- Hematology
- Urology
- Orthopedics
- Endocrinology
- Rheumatology
- Neurology
- GI
- Pulmonary
- Cardiology

- Nutrition
- Physical Therapy
- Occupational Therapy

19

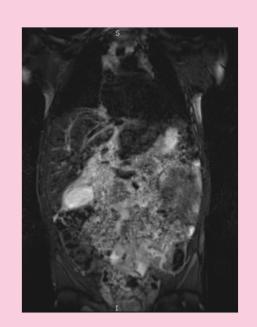

MANY SCARY DIAGNOSES CONSIDERED OVER 12 MONTHS

- Parvovirus
- ITP
- Hydrocele
- · Inguinal hernia
- Viral epididymitis
- · Behavioral anorexia
- Lyme, brucellosis

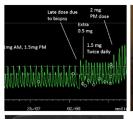
- Systemic lupus
- Cystic fibrosis
- · Fanconi's anemia
- · Dyskeratosis congenita
- PNH
- Aplastic anemia
- CMV, EBV, ehrlichiosis, Von Willebrand's

21

A MINOR BUMP ON THE HEAD TAKES A SERIOUS TURN

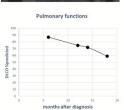

- "Goose egg" on the head rapidly expands to diffuse scalp swelling
- Seen urgently by local hematologist
- Platelets and fibrinogen low
- · Pain and swelling worsened
- Drove to ER at University of Michigan

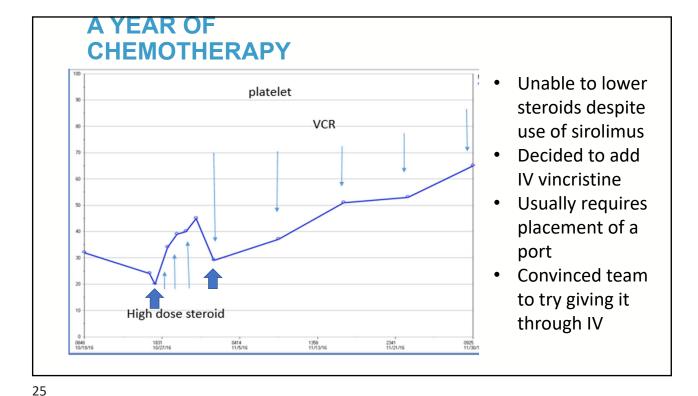
UNEXPECTED DIAGNOSIS: DIFFUSE LYMPHANGIOMATOSIS

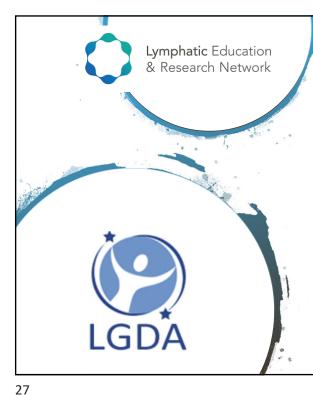

- MRI report read when we arrived back in Baltimore
- Didn't know what diagnosis meant: turned to Google
 - "Diffuse lymphangiomatosis has a poor prognosis and no cure. It is characterized by slow progressive growth of lymphatics commonly with chylous effusions and may be associated with lytic bone lesions and mediastinal compression."
- Looked online for anyone we thought might help and sent many emails

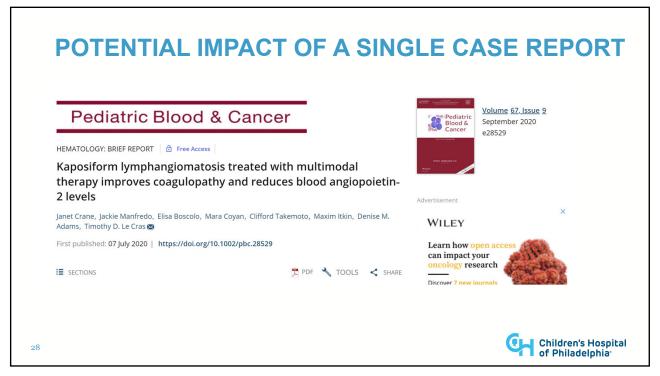
23

REACHED OUT


- Recommended a biopsy to confirm diagnosis
- Started on sirolimus (troughs, PK studies if needed)
- Words of wisdom: "Do not read about this" & "Take care of yourself and your marriage"
- Discussed other specialists that we will need (pulmonary, IR, cardiology, endocrine, ortho)
- I asked about what research was being done and how I can help







RESEARCHERS AND **CLINICIANS** WORLDWIDE

- Denise Adams MD, CHOP
- Steve Fishman, MD, Meghan O'hare, NP Boston Children's
- Philip John, MD (Sick Kids)
- Samira Syed MD, GOSH
- Matt Warman MD Boston Children's (tissue for sequencing)
- Tim LeCras PhD, CCH (serum markers, angiopoietin-2) Cincinnati Children's
- Max Itkin MD, UPenn
- Yoav Dori MD PhD, CHOP
- Hakon Hakonarson MD PhD, Sarah Sheppard MD, CHOP
- Stan Rockson, MD, Stanford
- Janet Crane, MD, Hopkins

- · Cliff Takemoto, MD, St. Jude's
- Michael Dellinger PhD, UT Southwestern
- Christopher Towe MD, CCH
- Sequencing by Illumina and GeneDx
- Yaser Diab MD, Children's National
- Francis Collins MD PhD, and Zorina Galis, PhD., PJ Brooks, PhD,
- LE&RN, (Bill, Phyllis)
- Lymphangiomatosis Gorham's Disease Association Registry (LGDA)

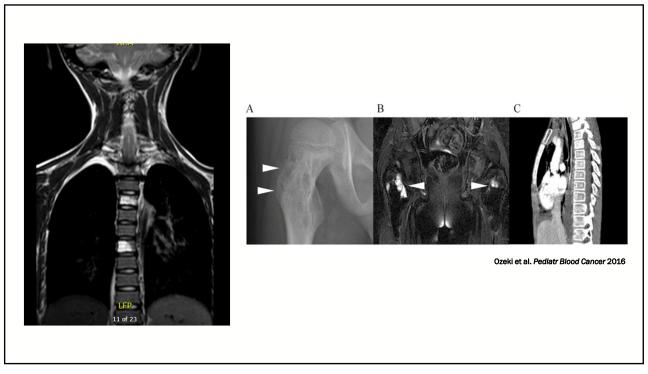
LESSONS LEARNED

- Diagnosis can be difficult even for those with a medical background
- Social media can bring vital information to patients with rare diseases and their families
- Clinicians and researchers can benefit from the patient community
- Imagine how this is for those with no medical knowledge who are not close to a major medical center...

29

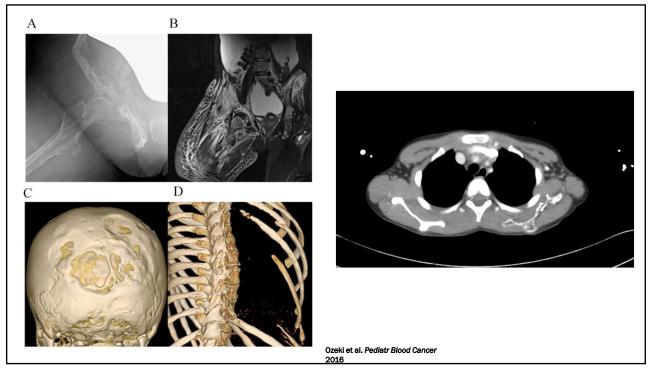
LYMPHATIC MALFORMATIONS

- · Macrocystic vs. microcystic
- Head and neck most common location
- Swelling, pain, infection, disfigurement, bone involvement
- Isolated LMs frequently with mutations in PIK3CA
- <u>Diagnosis</u> US, PE, MRI, but CT may be helpful for bony lesions
 → consider possibility of pleural/pericardial effusions and
 bony vertebral lesions, avoid biopsy
- <u>Treatment</u> sclerotherapy, full vs partial resection, sirolimus, antibiotics/steroids if infected, compression
- PIK3CA mutations



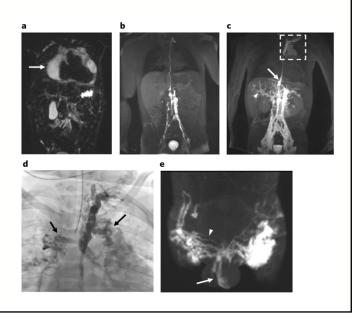
31

GENERALIZED LYMPHATIC ANOMALY (GLA)


- Previously known as lymphangiomatosis
- Non-neoplastic, multicentric proliferation of dilated lymphatic vessels, resembling a common LM
- Likely present since birth but becomes clinically significant usually within first 2 decades of life
- Affects bone, liver, spleen, mediastinum, lung, and soft tissues
- Bone involvement is osteolytic (punched out lesions, cortex intact)
- Clinical response depends on location and extent, thoracic involvement has worst prognosis
- PIK3CA mutations

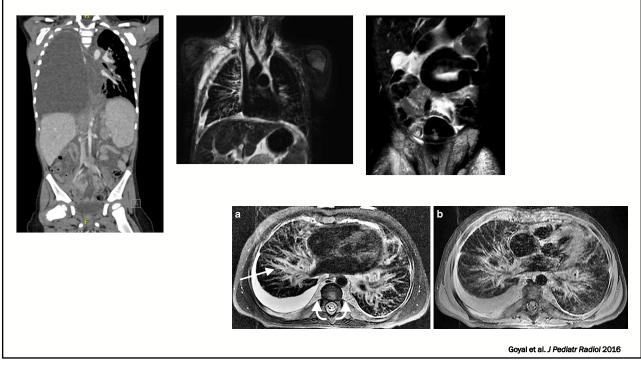
33

GORHAM STOUT DISEASE (GSD)


- Aka vanishing bone disease
- Significant clinical overlap with GLA, but tends to involve single site (or adjacent sites) bone and there is osteolysis of both medullary areas and cortex
- Upper axial skeleton most commonly affected
- Often associated with adjacent soft tissue mass or areas of microcystic LM
- Osteolysis can be profound and can result in unstable situations
 - → cervical/spinal instability or non-functional appendages
- KRAS

35

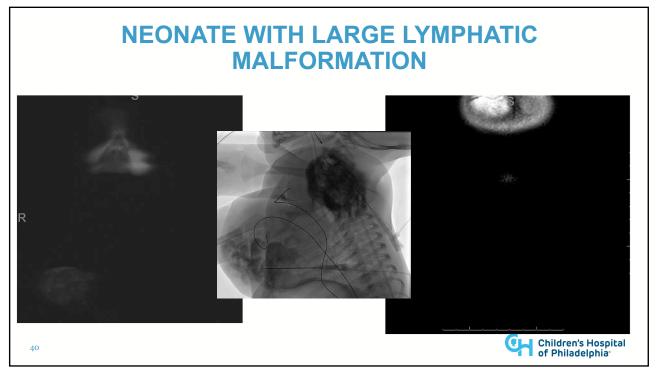
CENTRAL CONDUCTING LYMPHATIC ANOMALY (CCLA)


- Abnormal lymphatic vessels that lead to dilated vessels and cysts and reflux of lymphatic fluid/chyle into soft tissues
- Best characterized by or MR lymphangiography
- Mostly Rasopathies

KAPOSIFORM LYMPHANGIOMATOSIS (KLA)

- Considered an aggressive subtype of GLA, but histologically distinct
 → foci of spindle endothelial cells on a background of malformed lymphatic vessels
- Usually involves multiple organs, but predominantly thoracic cavity and causes significant (life-threatening) pleural effusions
- KLA effusions more likely to be frankly hemorrhagic than GLA
- Patients often coagulopathic at presentation (elevated D-dimer, hypofibrinogenemia, thrombocytopenia)
- Usually presents at a younger age than GLA and GSD and has higher morbidity/mortality
- Mortality 50-60% historically
- NRAS, PIK3CA

37


INTERVENTIONAL OPTIONS

- Sclerotherapy
- Embolization
- Lymphatic Intervention

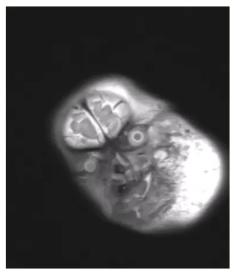
39

Children's Hospital of Philadelphia

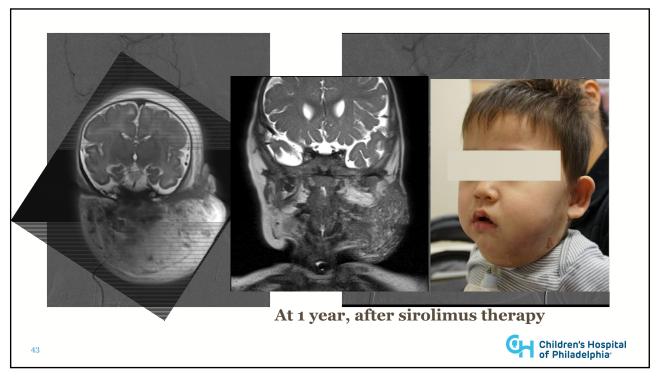
39

EMBOLIZATION

- Occlusion of a vessel, performed endovascularly.
 - Glue
 - Concentrated ethanol
 - Particles (plastic beads)
 - Coils

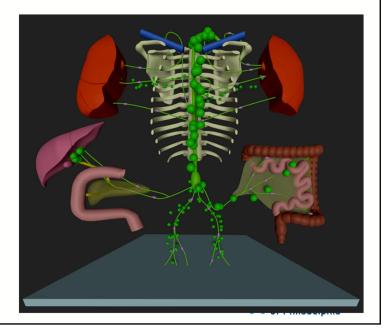

41

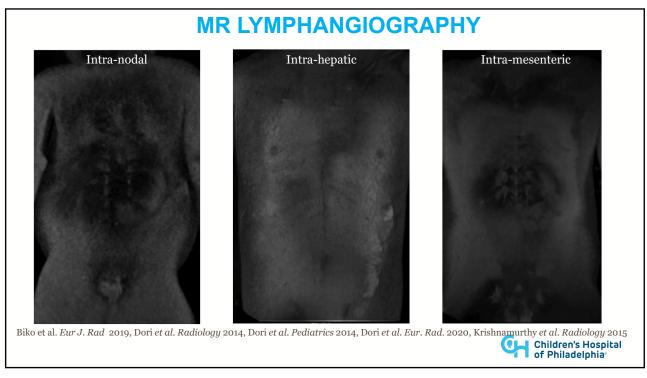
Children's Hospital of Philadelphia


41

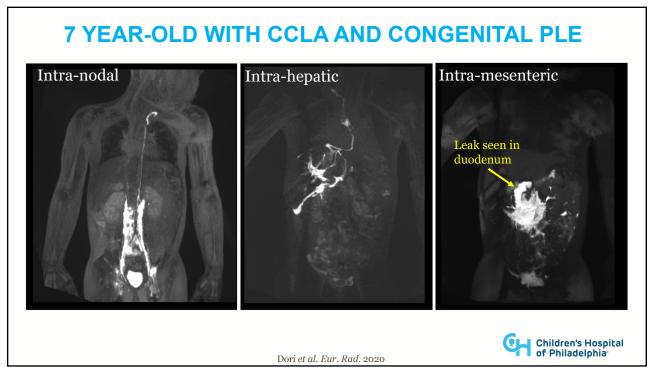
1 DAY-OLD, WITH KAPOSIFORM HEMANGIOENDOTHELIOMA, HEART FAILURE, CONSUMING PLATELETS

Children's Hospital of Philadelphia


43


LYMPHATIC ANATOMY AND FLOW

 Lymphatic anatomy and physiology was extensively studied up to the 1970s.


40-year hiatus

- Absence of lymphatic imaging methods
- Absence of interventional techniques

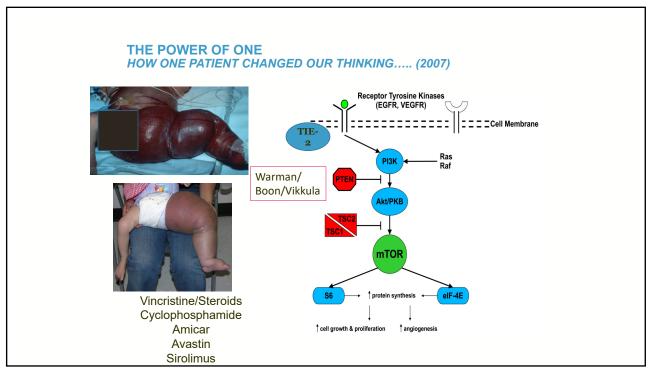
45

OUTCOME AFTER PLE TREATMENT

47

RADIOLOGY AND VASCULAR ANOMALIES: THE FUTURE

- Continued refinement and revision of lesion classification based on advances in imaging
- Further refinement in sclerotherapy, embolization, and ablation techniques
- Local drug delivery:
 - \bullet Using techniques in sclerotherapy & embolization
 - Ultrasound-assisted drug delivery



MEDICAL TREATMENT OPTIONS

The Power of One

49

49

MTOR INHIBITOR - SIROLIMUS

Starting sirolimus therapy

21 months on

18 months off

Recent

ISSVA 2010

51

51

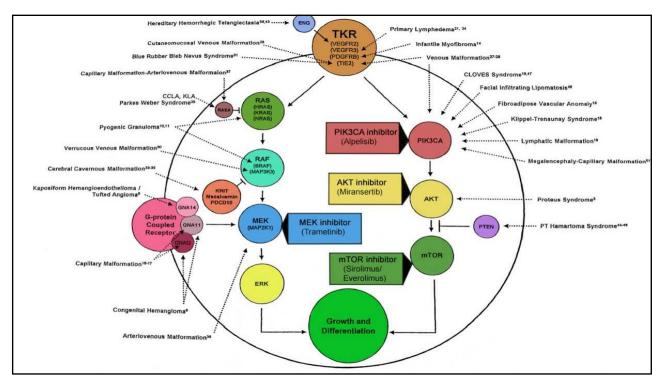
Conditions

MTOR INHIBITORS

- Sirolimus
- (Everolimus)
- Initially developed as an anti-fungal agent
- PK and PD well developed even in infants
- Treatment long term
- Can be used in conjunction with surgery and sclerotherapy
- Mechanism:
 - · Blocks the activity of mammalian target of rapamycin
 - Protein kinase that regulates Growth factors that stimulate Cell growth, differentiation and angiogenesis

- Side Effects
 - Immunosuppression
 - Mouth Sores
 - Headaches
 - GI complaints
 - Metabolic issues
 - Anemia
 - Hyperlipidemia
 - Pneumonitis
 - Effusions
- · FDA approved for transplant, LAM, TS

SIROLIMUS AND VASCULAR ANOMALIES


Over 100 articles in PubMed

Other ongoing (Clinical Trial.gov)

Recent multicenter randomized trial of sirolimus vs sirolimus and steroids (*Blood 139 (11) 2022*)

- Lymphatic Anomalies
- KHE/TA
- KLA
- CLVA/KT
- PTEN
- Venous Malformations
- BRBNS
- Not for: AVM, CCLA

53

PHENOTYPE/GENOTYPE CORRELATION

55

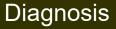
55

- Miransertib
- · Mechanism:
 - Binds and inhibits the activity of Akt
 - Inhibition of the PIK3/Akt signaling pathway
- Indications:
 - Breast Cancer
 - · Proteus syndrome
 - PROS
- Oral once a day dosing
- PK dosing
- 1/6 dose used in Cancer

- · Side Effects: well-tolerated
 - Mouth Sores
 - Headaches
 - GI complaints
 - Metabolic issues
 - Anemia
 - · Hyperlipidemia
 - Pneumonitis
- MOSAIC Study (Proteus and PROS) is active but not recruiting
- Study of Safety and Tolerability in Patients with PROS and Proteus Treated with Miransertib (MK-7075) (MK-7075-006)
- Other AKT inhibitors are in investigation

ALPELISIB

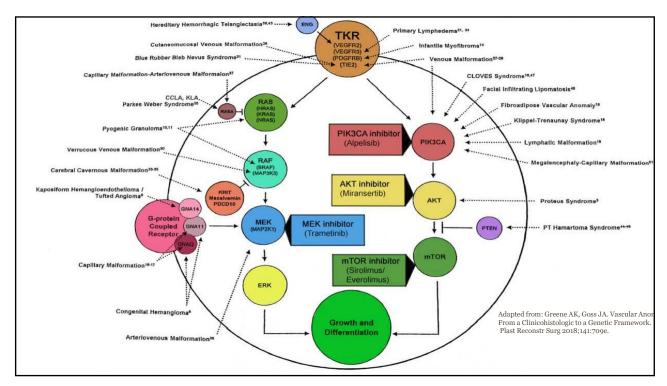
- Oral PIK3CA inhibitor for PROS
 - Selectively inhibits Class I PI3K p110α (catalytic subunit)
 - Lipid kinase that plays a role in biological processes, proliferation, survival, differentiation and metabolism
 - FDA approved for metastatic and recurrent Breast Cancer in combination with other therapy
 - Recent FDA approval for PROS (contingent on EPIKP2)
 - Recent reports of efficacy in Venous Malformations at ISSVA 2022
- Side Effects: Hyperglycemia, Diarrhea, Skin, Mouth sores, Alopecia
- Studies Available
 - · MAP Alpelisib for PROS
 - Retrospective Chart review (completed) EPIK-P1
 - Prospective, Double Blind upfront 16 week placebo controlled trial to assess efficacy and safety of Alpelisib in Pediatric and Adult patients EPIK-P2
 - Group I 18 years and older Group II 6-17 years


 - Group III 2-5 years
 - Starting dose for Group I 125 mg a day
 - Starting dose for Group II 50 mg a day

57

57

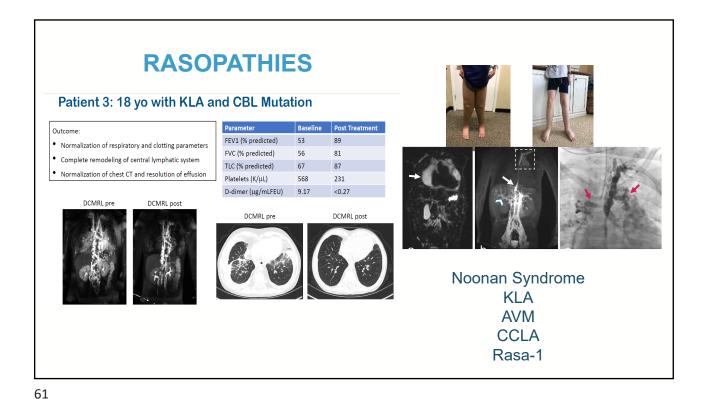
6 months



12 months

24 months

TREATMENT WITH **ALPELISIB**



59

MEK INHIBITORS

- Trametinib
 - Reversible MEK1/2 inhibitor
 - Approved for BRAF mutated melanoma, non-small cell lung cancer, anaplastic thyroid Cancer
 - Being studied in Pediatric brain tumors, LCH, Juvenile Myelomonocytic Leukemia, infantile cardiomyopathy associated with RAS-pathway mutations
 - Side Effects: Skin, GI, Cardiac, ophthalmologic
 - Reported cases at ISSVA with good results. Most adults with skin toxicity and only can tolerated 1mg – 1.5 mg a day. Liquid dosing available for children but need IND
- Cobimetinib In Extracranial Arteriovenous Malformations (COBI-AVM Study, Arkansas)
- Selumetinib Approved in NF patients
- Trametinib in Extracranial Arteriovenous Malformations (Stanford, UCSF)
- CaNVAS Genotype Phenotype study with Trametinib

Children's Hospital of Philadelphia

OTHER THERAPIES

- Topical VT30 (PIK3CA inhibitor)
 - Venous/Lymphatic malformations with PIK3CA or TEK mutations
 - Age 18-60
 - Multiple biopsies
 - Phase I
 - · Phase II
- PALV-06 Topical Sirolimus 3.9% gel (PTX-022)
 - · Phase II
 - Treatment of microcystic lymphatic malformations
 - 13 and older

Vascular Anomaly	Gene	Treatment
Venous Malformation	TEK PIK3CA	TIE-2 Inhibitors Alpelisib
PROS	PIK3CA	Alpelisib, mTOR inhibitors
PHTS	PTEN	mTOR inhibitors
ННТ	ENG, ALK1 HHT3, HHT4 GDF20r BMP9	Bevacizamab Thalidomide/derivatives Pazopanib
GSD	KRAS	MEK Inhibitors, mTOR inhibitors with bisphosphonates
KLA	NRAS CBL	MEK Inhibitors, mTOR inhibitors
CM-AVM1 CV-AVM2	RASA1 EPHB4	?MEK Inhibitors
AVM	MAP2K1 KRAS BRAF	MEK inhibitors Thalidomide
Congenital Hemangiomas	GNAQ GNA11	GNAQ inhibitors
Pyogenic Granulomas	GNAQ,KRAS,HRAS, BRAF, GNA14	?BRAF inhibitors, MEK inhibitors

63

NEW THERAPEUTICS

- Goal is to reduce not eliminate: we need to support normal growth
- We do not need the MTD
- Use of medication will be chronic thus the toxicity profile of a drug is important (short and long term)
- We will be treating Children and Adults
- Cancer Diagnoses may learn from VA

Children's Hospital of Philadelphia

THOUGHTS FOR THE FUTURE **Improved** Need for more Outcome Adaptive Study Preclinical **Natural History** Measures for Design Testing Data Clinical Trial Availability of Circulating free Improvement of Animal models genomic testing NIH Funding DNA For all Collaboration Awareness Nationally and **Industry support Drug Delivery** Internationally Children's Hospital of Philadelphia

66

THE POWER OF THE PATIENT'S VOICE

- An individual patient can catalyze important clinical & scientific collaboration "The Power of One"
- We the community can and should contribute to patient care and research
- Each of us can support our rare disease cause using whatever skills and background experience that we have

IPDJIQH北KDW北H #DQ #FFRP SOLVK#WRJHWKHJ

THANK YOU

- Patients and Families
- Patient and Family Support Groups: LMI, LGDA, KT support Group, Cloves Syndrome Community, NOVA, HHT support Group
- Funding Sources: FDA, NIH, LMI
- Institutional Support: Frontier Program, Hospital and Divisions

