

O Cancer.Net

Emerging Applications of CAR T-cell Therapy in Cancer

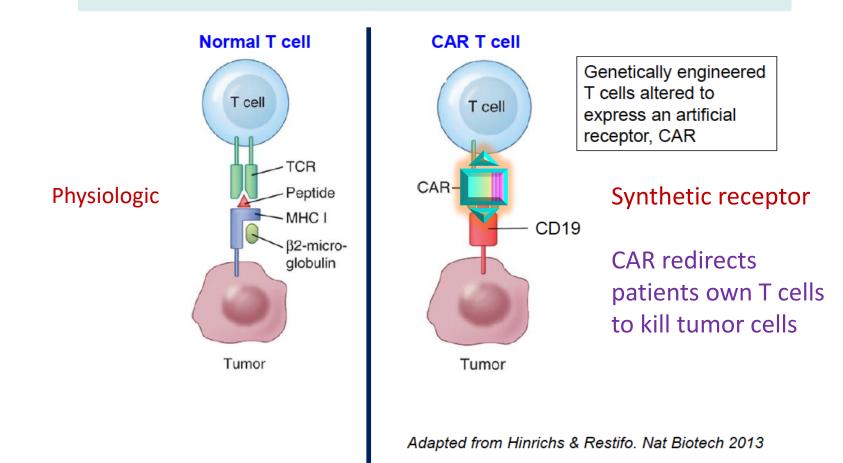
Veronika Bachanova, MD, PhD

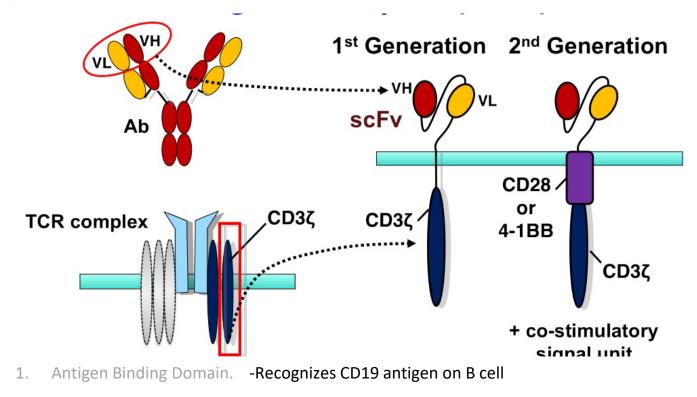
Professor of Medicine

University of Minnesota

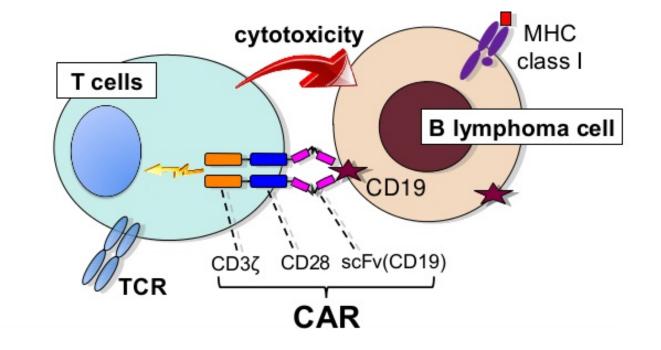
March 15, 2022

- <u>Review principles of CAR T-cell therapy</u>, including its mechanism of action and cellular targets.
- Describe <u>current data about the recent and emerging applications of CAR T-cell therapy in</u> multiple myeloma, lymphoma, other hematologic cancers, and solid tumors.
- Discuss the <u>limitations and challenges of CAR T-cell therapy</u>, including common side effects and toxicities.
- Report on the <u>guidelines</u> available for determining treatment strategies using CAR T-cell therapy.
- <u>Identify factors that should be considered when determining individuals' eligibility</u> for. and potential benefit from, CAR T-cell therapy.


Principles of cellular therapy

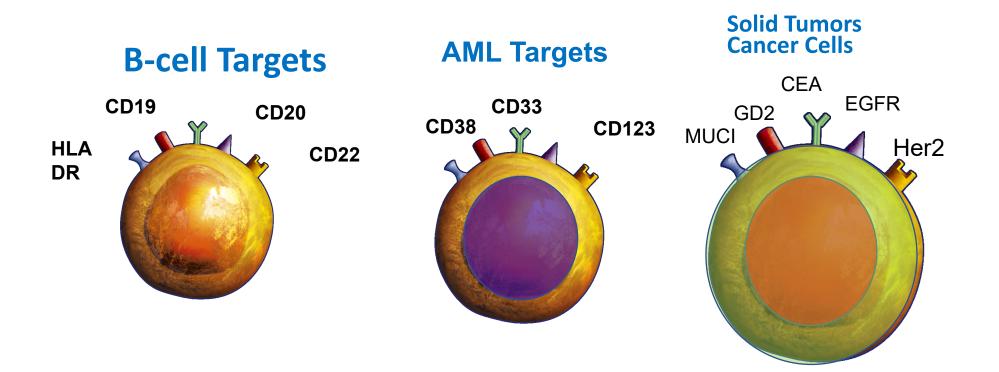


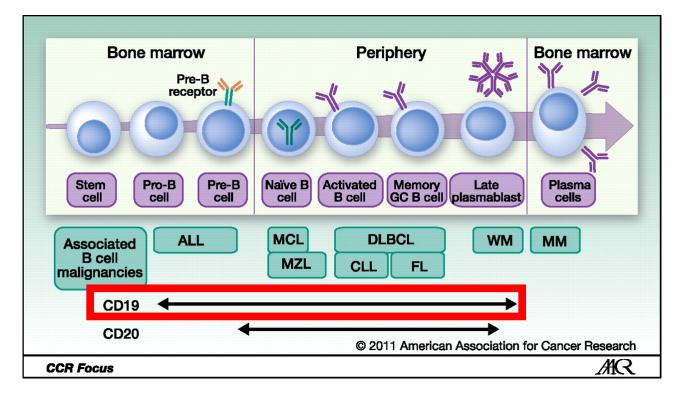
Chimeric Antigen Receptor (CAR) Modified T cells



- 2. Costimulatory Domain. -Increases T-cell activation & enhances cytolytic function
- 3. CD3-zeta chain signaling domain. -Induces T-cell activation

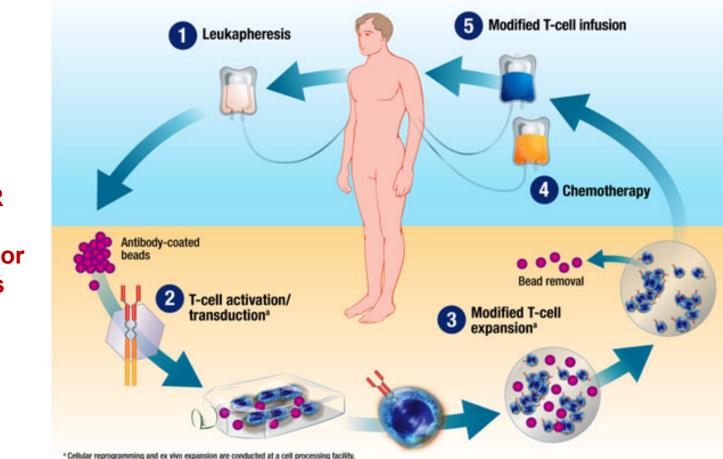
Adapted from: Maus MV, et al. Blood. 2014;123:2625-35.



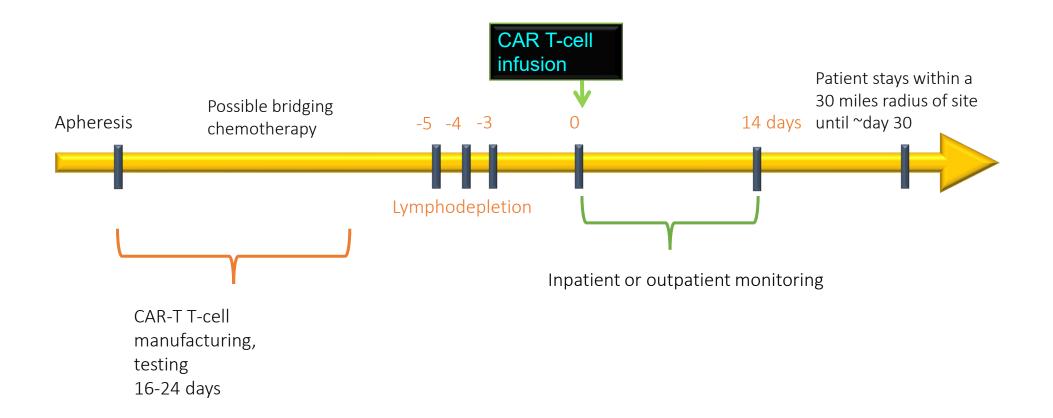


Targets Expression on Cancer Cells

B Cell Malignancies are CD19+



•CD19 is expressed throughout B-cell development; therefor it is expressed in most B cell malignancies


•CD19 expression is not expressed on pluripotent bone marrow stem cells

Each CAR-T product is custom made and patient specific Ex vivo CAR-T cell manufacturing

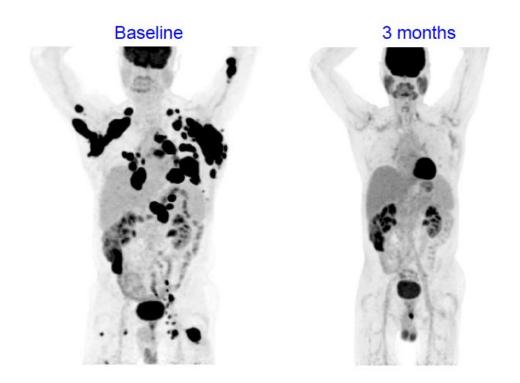
GENE TRANSFER Using Retrovirus or Adenovirus

The Road to Remission using autologous CAR-T

Source: https://decisionresourcesgroup.com/drg-blog/u-s-medical-communitys-perception-car-t-cell-therapies/

Currently FDA approved autologous CAR-T cell therapies

Lymphoma Relapsed/Refractory antiCD19	B-cell Acute Leukemia Relapsed/Refractory antiCD19	Multiple Myeloma Relapsed/Refractory • anti BCMA
 Aggressive B-cell lymphoma Tisa-Cel Axi-Cel Liso-Cel 	 B-cell ALL (0-26 yrs) Tisa –Cel (8/2017) B-cell ALL(>18 yrs) Brexucabtagene 	 Idecabtegene (BCMA) Ciltacebtagene (BCMA)
 Follicular lymphoma Axi-Cel Mantle cell lymphoma Brexucabtagene 		


High Efficacy of CD19 CAR-T's for patients with relapsed/refractory aggressive B cell lymphoma

	<i>Axi-cel</i>	<i>Tisa-cel</i>	<i>Liso-cel</i>
	Yescarta	Kymriah	Breyanzi
	(ZUMA-1)	(JULIET)	(TRANSCEND)
Indications	relapsed or refractory	relapsed or refractory	relapsed or refractory
	after 2 or more lines	after 2 or more lines of	after 2 or more lines of
	of systemic therapy	systemic therapy	systemic therapy
Number of pts in pivotal studies (enrolled/infused)	111/101	165/111	342/268
Prior ASCT	21%	49%	33%
Refractory disease	79%	55%	67%
Overall Response	82%	52%	73%
Complete Response	58%	38%	53%
	t al. <i>NEJM</i> (2017), Schu	Ister et al. <i>NEJM</i> (2019), A	bramson et al. <i>Lancet</i> (202

Profound efficacy

62 yo M with DLBCL Prior therapies

- R-CHOP
- Radiation
- R-GDP
- Radiation
- R-ICE
- R-Revlimid

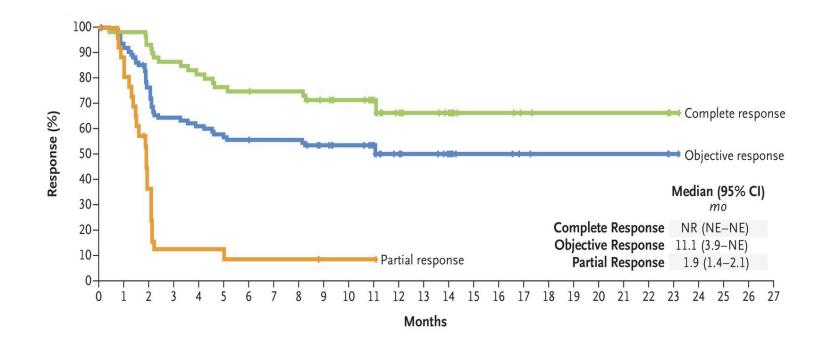
Remains in CR at 9 months following infusion of KTE-C19, ZUMA-1 trial.

Patients with large tumor bulk can respond to CAR-T19

Subject with Multiple Co-morbidities

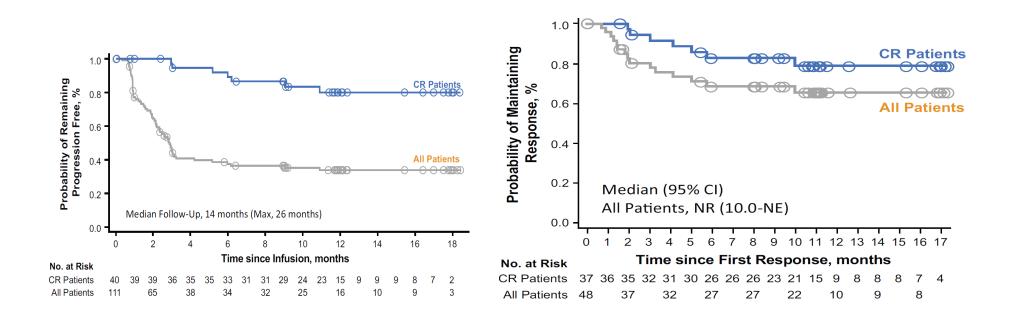

68 yo M with DLBCL-GCB

Prior therapies – 7

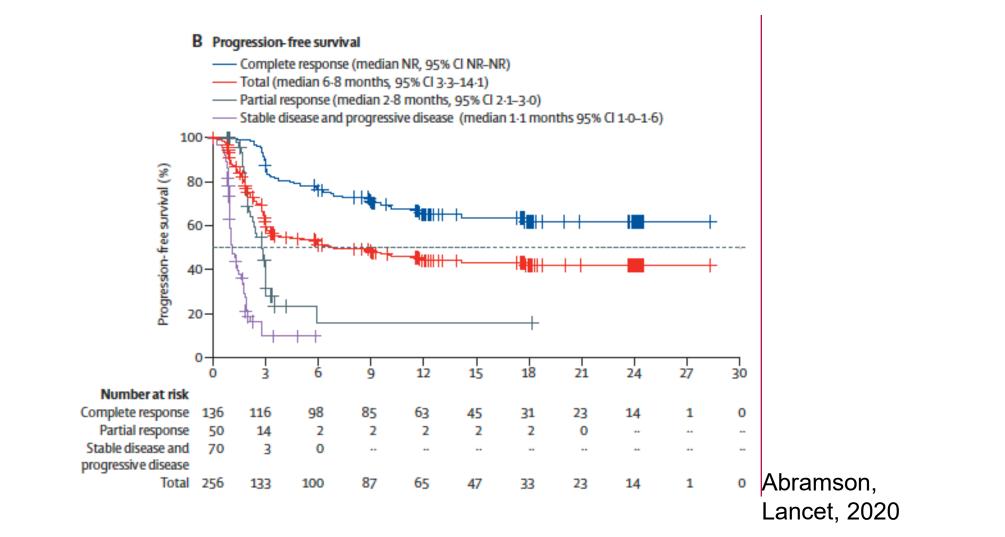

- R-CHOP
- ICE \rightarrow Zevalin
- R-ESHAP
- R-Hypercytoxan
- Gemcitabine
- Bendamustine
- R-Hypercytoxan

Co-morbidities

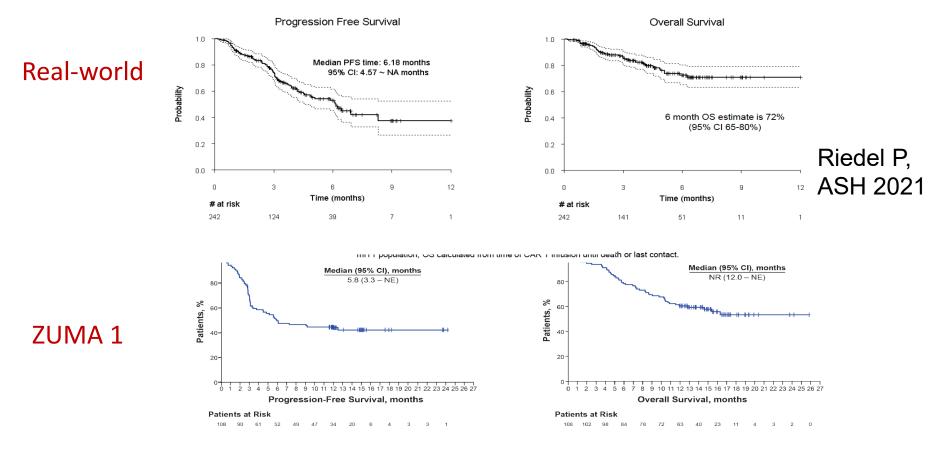
- ECOG PS 3
- EF 45%
- Pulmonary embolism
- GI bleed
- Obstructive jaundice → Biliary catheter



Axicabtagene ciloleucel in B Cell Lymphoma Duration of Response


Neelapu et al. NEJM 2017

Survival of patients with DLBCL after Tisagenlecleucel (JULIET trial)

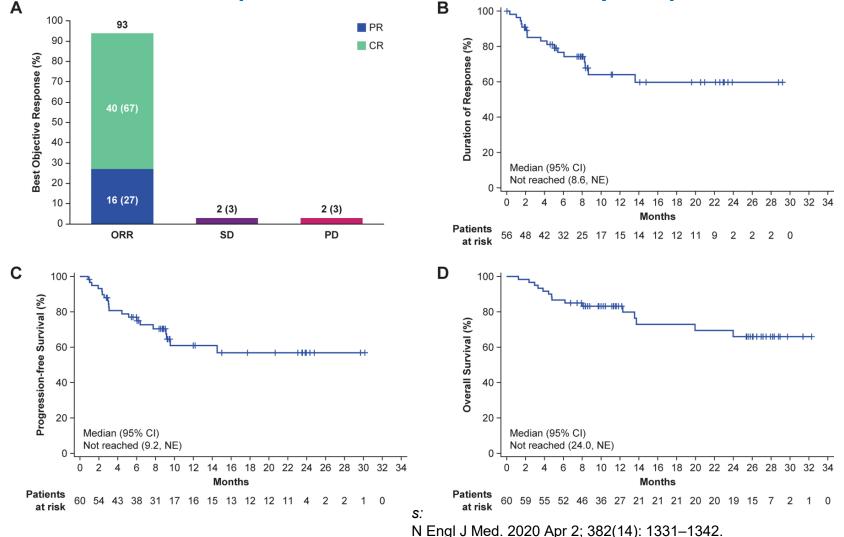


SJ Schuster et al. N Engl J Med 2019;380:45-56.

Lisa-cell for relapsed/refractory DLBCL, PML, Grade 3b FL -TRANSCEND trial

Survival after Axi-Cell for DLBCL in Real-World analysis 13 US Centers CAR-T Consortium (over 45-61% would NOT fit the eligibility for trials)

Neelapu, Locke et al. NEJM. 2017 Dec 28;377(26):2531-2544


Which Clinical Factors Are Associated with Response to CAR-T19 (Tisa-cell) ?

Subgroup	Overall Response Rate	
	no. of events/total no.	% (95% CI)
All patients	48/93	52 (41-62)
Age		
<65 Yr		49 (37–61)
≥65 Yr	13/22	59 (36–79)
Sex		
Female	19/33	58 (39–74)
Male	— 2 9/60	48 (35–62)
Previous response status		
Refractory to the last line of treatment	19/48	40 (26–55)
Relapsed after the last line of treatment	29/45	64 (49–78)
IPI at enrollment		
<2 Risk factors	14/25	56 (35–76)
≥2 Risk factors	- 34/68	50 (38–62)
Previous antineoplastic therapy		
≤2 Lines	——— 26/49	53 (38–68)
>2 Lines	22/44	50 (35–65)
Molecular subtype		
Activated B cell	21/40	52 (36–69)
Germinal cell	24/50	48 (34–63)
Previous HSCT		
No	— 26/52	50 (36–64)
Yes	22/41	54 (37–69)
Rearranged MYC plus BCL2, BCL6, or both		
Double or triple hit	8/16	50 (25–75)
Not double or triple hit	- 40/77	52 (40–64)
Time from most recent relapse to infusion		
≤Median	23/48	48 (33–63)
>Modian	——— 25/45	56 (40–70)
Baseline tumor volume		
<100 ml	25/47	53 (38–68)
≥100 ml	11/30	37 (20–56)
Unknown	12/16	75 (48–93)
	o 10 20 30 40 50 60 70 80 90 100	

SJ Schuster et al. N Engl J Med 2019;380:45-56.

⁾

CAR-T for R/R Mantle cell lymphoma

CAR-T SOC and disease indications summary

Product	Axi-cel Yescarta	Brexu-Cel Tecartus	Liso-Cel Breyanzi	Tisa-Cel Kymriah	lde-Cel Abecma	Cilta-cel Carvykti
CAR-T Antigen target; co-signaling; T cell composition	CD19 (FMC63) CD28	CD19 (FMC63) CD28	CD19 (FMC63) 41BB 1:1 CD4, CD8	CD19 (FMC63) 41BB	BCMA 41BB	BCMA 41BB
Aggressive B-NHL Diffuse large B-cell lymphoma	х		х	х		
High grade B-NHL	Х		Х	Х		
Large B-NHL transformed from follicular lymphoma	x		x	X		
Large B-NHL transformed from indolent lymphoma			x			
Primary mediastinal B-cell NHL (PMBCL)	х		x			
Mantle cell lymphoma		Х				
Follicular lymphoma-Grade 3B			Х			
Follicular lymphoma-Grade 1/2/3A	x					
B-Acute Lymphocytic Leukemia (B- ALL) Pediatric, young adult(<=25yo)				х		
Adult (>= 18 yo)		Х				
Multiple Myeloma					Х	Х

University of Minnesota CAR-T Therapy Process Overview

• Appointment for consult within a week

- Consult with CAR-T cell provider
- Prior authorization (Single Patient Agreement)
- Apheresis

2

3

• Manufacturing at CAR-T facility (18-20 days)

Management of patient awaiting CAR-T therapies

Bridging therapy to control tumor but minimize toxicity Use preventive antimicrobials to minimize infections Often managed by referring oncologist

- Gem-Ox (or alternative)
- Steroids
- Radiation
- Ibrutinib or Revlamid in non-GCB subtype

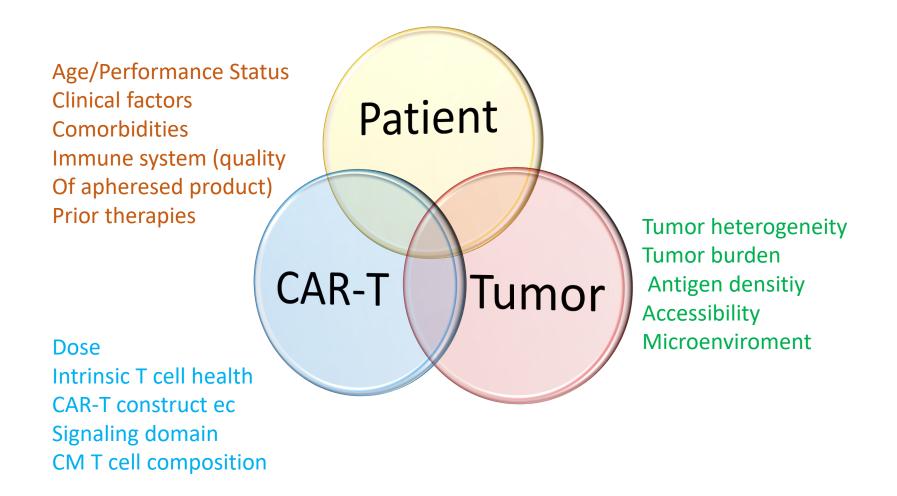
Preparation for CAR-T Administration

Patient work-up (organ function, Echo, CT)Review results visit and plan treatment

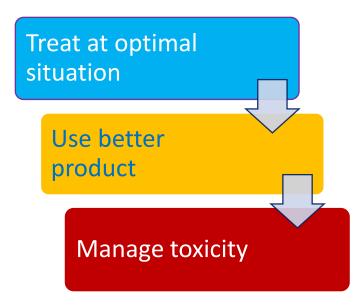
• Lymphodepleting chemotherapy (Flu/Cy x 3 days outpatient)

• CAR-T infusion – inpatient versus outpatient

• Inpatient and outpatient daily monitoring x 14 days


• 28 days stay within 30 min drive

5


6

• Long term monitoring in LTFU protocol for survival and secondary cancers

Relevant factors for achieving remission with CAR-T therapy

Key practical determinants of outcomes after CAR-T

- 1) Patient selection early referral, smaller tumor bulk, KPS, manage comorbidities
- 2) Quality of T cells (central memory phenotype, novel constructs, CAR-T exhaustion)
- 3) Bridging therapy ("art" of oncology)
- 4) Assess and manage of toxicity (treatment mortality is about 5%)

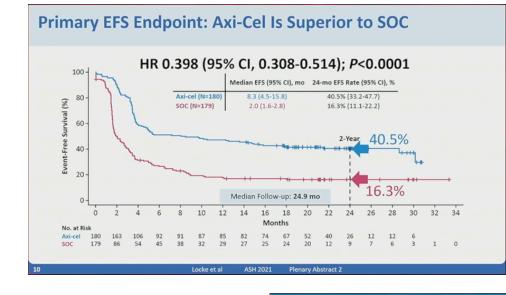
CD19 CAR-T in Practice

• Early referral is critical for APPROVED DISEASES

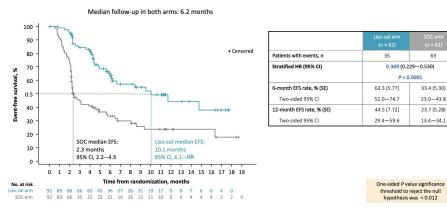
- Aggressive B cell lymphoma: Failure of 2 lines of therapy or autologous HCT
- Mantle cell lymphoma: relapsed and refractory disease
 - Relapse after autologous HCT, ineligible for AHCT, ibrutinib failure
- Follicular lymphoma: relapsed and refractory disease
 - Failure of chemo-immunotherapy (refractory or duration of response <2 years)
 - Failure to autologous HCT or >=3 lines of therapy
 - Short duration of remission with 2nd or subsequent line of therapy

Presence of co-morbidities

- Organ function is relevant but well controlled comorbidities and age should not be a barrier to CAR-T therapy
- Age should not be a barrier to successful CAR-T therapy


Clinical scenarios of aggressive B-cell lymphoma without effective therapy

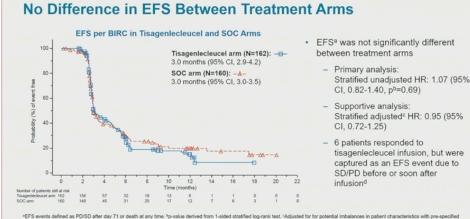
- 61yo pt with DLBCL Resistant to primary therapy (R-CHOP, R-EPOCH) and not a candidate for transplant
- 71 yo pt with relapsed triple hit DLBCL with failure to achieve remission with R-ICE salvage chemotherapy


 52 yo pt 12 mont
 Pre-CAR-T era: Median survival ~ 10 months
 SCHOLAR -1 Crump, JCO, 2016 Emerging indication in DLBCL: 2nd line randomized trials CAR-T19 vs Autologous SCT for R/R DLBCL

	ZUMA-7	BELINDA	TRANSFORM
	Axi-cel	Tisa-cel	Liso-cel
	(Kite)	(Novartis)	(Celgene/BMS)
EFS (1º endpoint)	Met	Not met	Met
	HR 0.398 (p<0.0001)	HR 1.01 (p=0.69)	HR, 0.349 (p<0.0001)
Overall Response	83%/65%	46%/28%	86%/66%
Compete Response	vs	vs	vs
(CAR-T vs SOC)	50%/32%	43%/28%	48%/39%
Median PFS	14.7 mo vs 3.7 mo (HR 0.49, 95% CI 0.37- 0.65)	N/A	14.8 mo vs 5.7 mo (HR, 0.406; p=0.0001)

Emerging indication in DLBCL: 2nd line randomized trials CAR-T19 vs Autologous SCT for R/R DLBCL

TRANSFORM: Event-free survival per IRC (ITT set; primary endpoint)

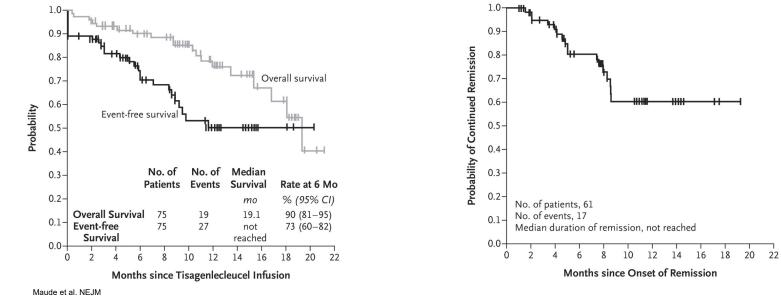

EFS is defined as the time from randomization to death due to any cause, progressive disease, failure to achieve CR or PR by 9 weeks post-randomization or start of a new antineoplastic therapy due to efficace concerns, whichever occurs firs CI, confidence interval: HR, hazard ratio: NR, not reached: SE, standard error

Kamdar M. et al. ASH 2021 [Abstract #91]

ASH 2021 oral

abstracts

63

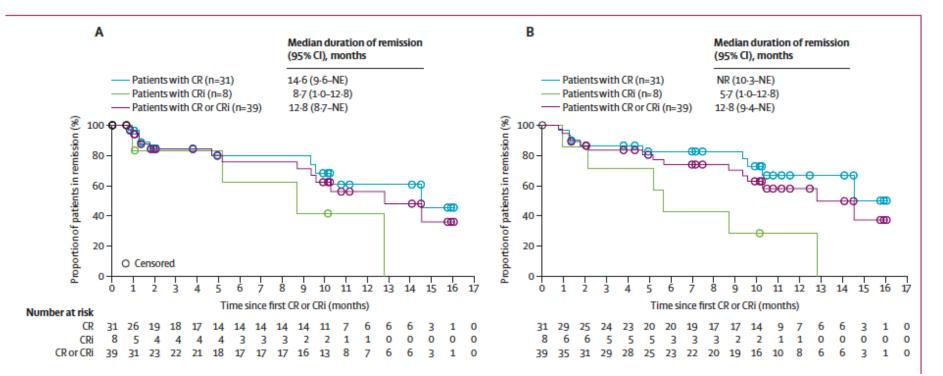


covariates of age, sex, race, ECOG perfo 0.84 (95% CI: 0.63, 1.12). ance status, histological subgroup, disease stage, and disease subtype. Stratified adjusted HR accounting for delyed responses in both arms yield HR of on entreview committee: CL confidence interval: EFS, event-free survival: HR, hazard ratio: OS, overall survival: PD, progressive disease: SD, stable disease: SOC, standard of BIRC. blinded

FDA-approved CAR T Cell Therapies for B-Acute Lymphoblastic Leukemia

Tisagenlecleucel

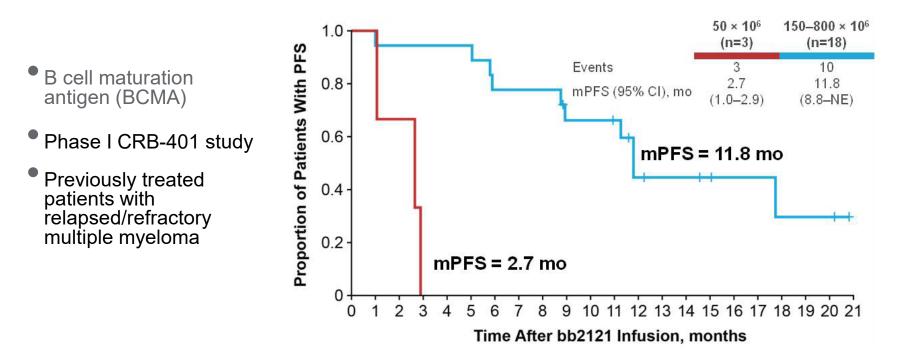
• ELIANA: patients up to age 25 years with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse



Brexucabtagene for adult R/R ALL

	Treated patients (n=55)	Enrolled patient (n=71)
Age, years	40 (28–52)	44 (30–59)
≥65 years	8 (15%)	11 (15%)
Sex		
Female	22 (40%)	30 (42%)
Male	33 (60%)	41 (58%)
Relapsed or refractory subgroup		
Primary refractory	18 (33%)	21 (30%)
Relapsed or refractory to two or more previous systemic therapy lines	43 (78%)	54 (76%)
First relapse with remission ≤12 months	16 (29%)	20 (28%)
Relapsed or refractory post allogeneic SCT¶ Bone marrow blasts at baseline‡	24 (44%)	29 (41%)
n	55	70
Median (IQR)	60% (17-90)	67% (34-90)
≤5%	5 (9%)	6 (8%)
>5% to 25%	10 (18%)	10 (14%)
M3 bone marrow involvement (>25% blasts)	40 (73%)	54 (76%)

Response	
Overall	71%
Response	
Complete	56%
response	


Proportion of patients with R/R B-ALL in remission over time

With and without censoring for patients who underwent subsequent allogeneic stem cell transplantation

Shah B, Lancet, 2021

BCMA+ CAR T Therapy for Myeloma

FDA approved CAR-T therapy for Multiple Myeloma

	Ide-Cel – Phase 2 (KarMMA- 1) ^{1,2} N = 128	Cilta-Cel – Phase 1b/II CARTITUDE-1 ^{3,4} N = 97
ORR/CR, %	73% / 33%	98% / 83%
Median PFS, mo	8.6 mo	NR, 2-Yr PFS 60.5%
CRS, Any Gr / ≥ Gr 3	84% / 5%	95% / 5%
ICANS, Any Gr / ≥ Gr 3	18% / 3%	21% / 10%*
Drug use	Toci: 52% Steroid: 15%	Toci: 69% Steroid: 22% Anakinra: 19%

1. Munshi N et al NEJM 2021. 2. Anderson L et al. ASCO 2021. Abstr. 8016. 3. Berdeja J et al. Lancet 2021. 4. Martin T et al. ASH 2021. Abstr. 549.

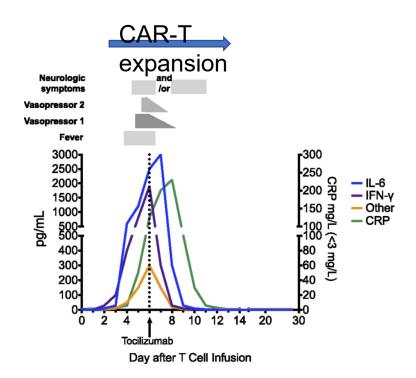
Ide-cel (Abecma) Outcome in Patient Subgroups (KarMMa-1)

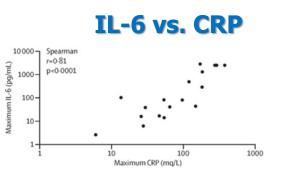
Subgroup		N	CR Rate, % (95% CI)
Age group, years	<65	83	_
	≥65	45	- _
	Male	76	_
Sex	Female	52	_
	150×10^{6}	4	•
de-cel target dose level,	300 × 10 ⁶	70	_ - _
CAR+T cells	450×10^{6}	54	_
	l or II	104	_
R-ISS stage at enrollment	111	21	_
High-risk cytogenetics	Yes	45	_
del(17p), t(4;14), t(14;16)	No	66	_ _
Tumor burden at baseline,	≥50%	65	_
% BMPCs	<50%	57	_
	≥50%	109	_ _
Tumor BCMA expression	<50%	3	•
	Yes	50	
Extramedullary disease	No	78	_
	Yes	33	
Penta-refractory*	No	95	
Bridging therapy	Yes	112	
	No	16	

Munshi N et al NEJM 2021.

BCMA CAR-T in Practice

- FDA approval
 - Exposure to proteasome inhibitor, IMiDs, CD38 antibody
 - After 4 prior lines of therapy
- BCMA CART in standard of care practice, close to 50% of the patients do not meet registration trial criteria
- Emerging experience to be seen for myeloma
 - Renal insufficiency
 - Plasma cell leukemia
 - Concurrent amyloidosis
- Manufacturing access is limited. Early referral is key!

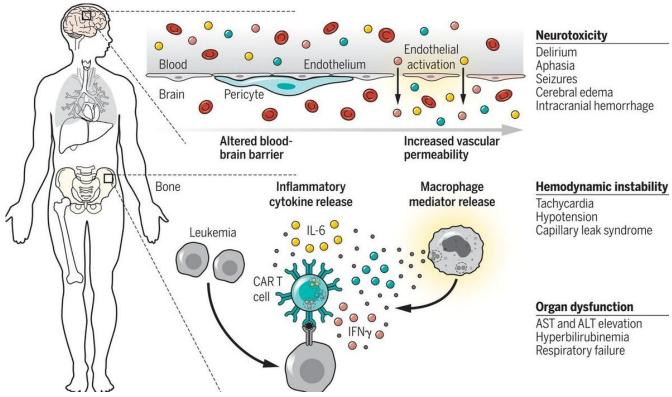

Challenges and limitations of autologous CAR-T cell therapy


- Each autologous CAR-T product is unique "custom made" with variable and waiting time "from order to infusion"
- Delay in effective therapy for patients with aggressive cancers can be detrimental
- Access issues (not all patients who can benefit are currently referred)
 - Concerns are distance of center from home
 - Resources for 24 hours care
- Failures to collect, manufacture and meet specification (Impaired T cells)
- Less then half of patients with commercial CAR-T achieve achieve durable remissions
 - Loss of target (CD19 negative relapse)
 - Poor CAR-T expansion and CAR-T exhaustion
- Toxicity neurotoxicity (ICANS) and cytokine release syndrome (CRS)

Important Black Box Warning on All CAR-T Products

- Cytokine Release Syndrome (CRS), including fatal or life-threatening reactions, occurred in patients receiving CAR-T. Do not administer CAR-T to patients with active infection or inflammatory disorders. Treat severe or life-threatening CRS with tocilizumab with or without corticosteroids.
- Neurologic toxicities, including fatal or life-threatening reactions, occurred in patients receiving CAR-T, including concurrently with CRS, after CRS resolution or in the absence of CRS. Monitor for neurologic events after treatment with CAR-T. Provide supportive care and/or corticosteroids as needed.
- CAR-T is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS)

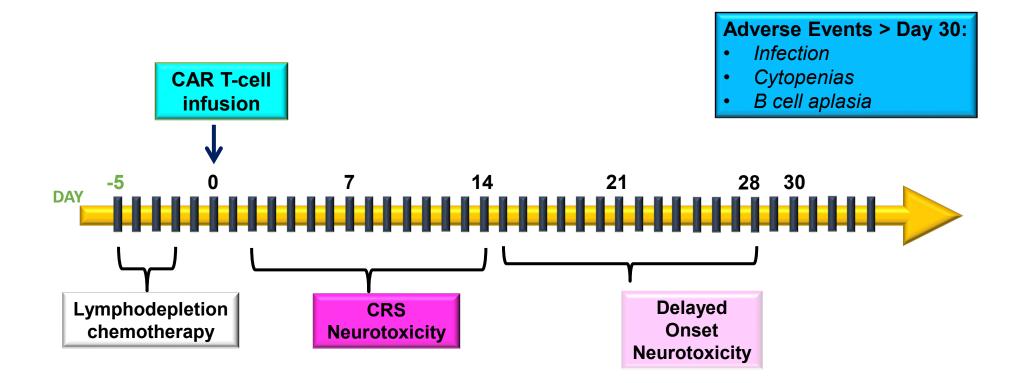
Unique toxicity: Cytokine Release Syndrome (CRS)



Tocilizumab is IL6R MoAb effective in treatment of CRS

Grupp SA, et al. N Engl J Med. 2013;368:1509-18.

<u>Cytokine Release Syndrome (CRS) and</u> ICANS pathophysiology



June et al. Science 2018

CRS: Clinical Signs & Symptoms

Organ System	Symptoms		
Constitutional	Fever, rigors, malaise, fatigue, anorexia, myalgias, arthralgias		
Skin	Rash		
Respiratory	Tachypnea, hypoxemia		
Cardiovascular	Tachycardia, hypotension, changes in cardiac output		
Coagulation	Elevated D-dimer, hypofibrinogenemia, bleeding		
Renal	Azotemia		
Hepatic	Transaminitis, hyperbilirubinemia		

CAR T Toxicities Timeline

Brudno JN, et al. Blood. 2016;127:3321-30. Neelapu SS, et al. Nat Rev Clin Oncol. 2018; 15:47-62

ASBMT Consensus Grading for CRS Associated with Immune Effector Cells (IEC)

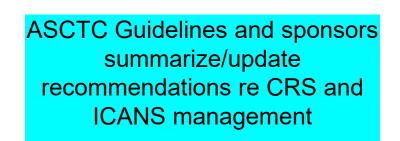
CRS Parameter Grade 1		Grade 2	Grade 3	Grade 4	
Fever*	T _m ≥100.4°F	T _m ≥100.4°F	T _m ≥100.4°F	T _m ≥100.4°F	
With either:					
Hypotension	None	Responsive to fluids	Requiring 1 vasopressor (w/ or w/o vasopressin)	Requiring multiple vasopressors (excluding vasopressin)	
And/or					
Нурохіа	None	Low-flow nasal cannula or blow-by	High-flow nasal cannula, face mask, non- rebreather mask, or Venturi mask	Requiring positive pressure (CPAP, BiPAP Intubation and mechanical ventilation)	

• Organ toxicities associated with CRS may be graded according to CTCAE v5.0, but they do not influence CRS grading

• Low-flow nasal cannula: O2 delivered at <6 L/minute.

Lee DW, et al. Biol Blood Marrow Transplant. 2018 Dec 25. pii: S1083-8791(18)31691-4.

Toxicities vary by CAR-T product


	Grade ≥3 CRS	Grade ≥3 ICANS
Axi-cell	13%	31%
Tisa-cell	22%	12%
Liso-cel	1%	13%
Brexucabtagene (B-ALL)	24%	25%
Idecabtegene (BCMA)	84% (all) 5%	18%(all) 3%
Ciltacebtagene (BCMA)	95% (all) 5%	21% (all) 10%*

Management of CRS and ICANS

- Tocilizumab IL-6R Inhibition
 - Tocilizumab: FDA approval for CAR T-cell induced severe or life threatening CRS in August 2017
 - For for any >=Grade 2 or prolonged Grade 1
 - IL-6 blockade demonstrates rapid reversal of CRS symptoms in most patients

- Suppress inflammatory responses
- Dexamethasone 10 mg q6h or methylprednisolone 1mg/kg q12h followed by rapid taper

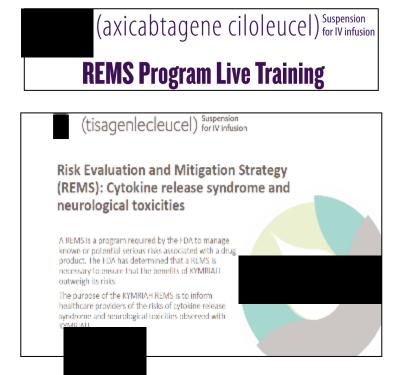
Corticosteroid

Glucocorticoid

receptor

IL-6R

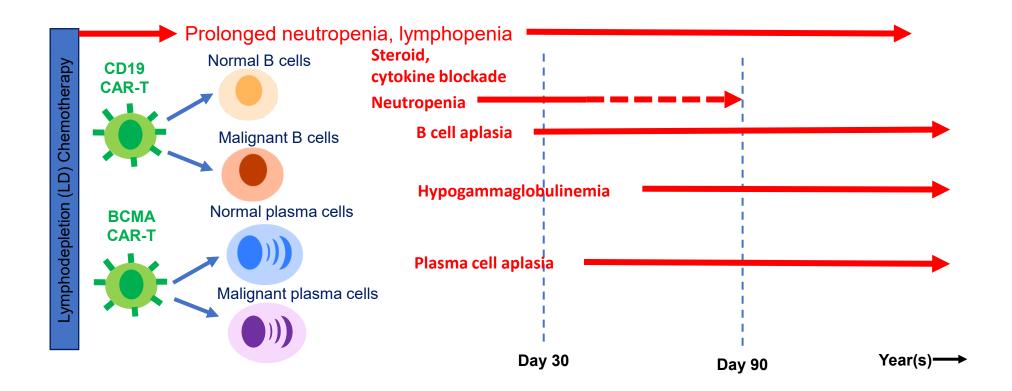
blockade


L-6

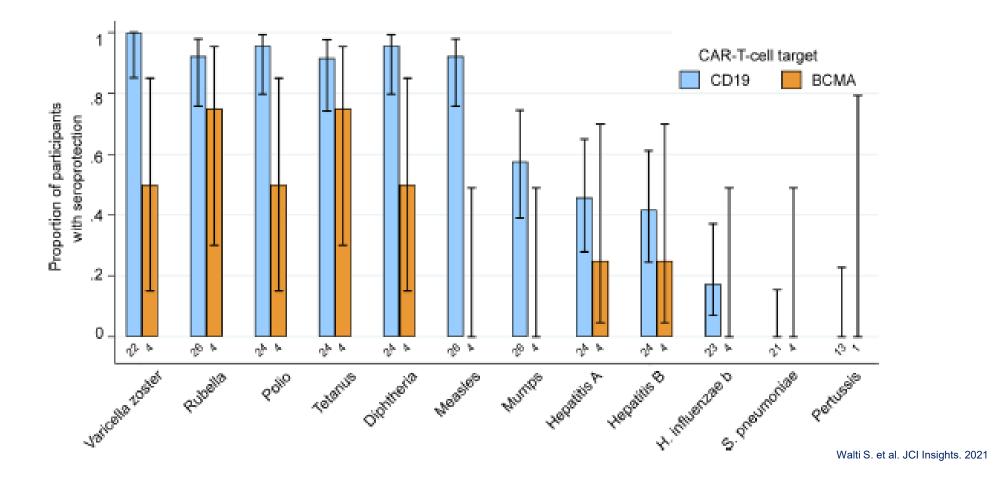
II -6R

Adapted from: Bonifant CL, et al. Oncolytics. 2016;3:16011. SL Maude, et al. Cancer J. 2014;20: 119-122

CAR T is Restricted to Certified Healthcare Facilities


- All CAR-T products are available under a Risk Evaluation and Mitigation Strategy (REMS)
- Healthcare providers who prescribe, dispense or administer must be trained in management of CRS and neurological toxicities and complete the knowledge assessment
- Requires immediate access to 2 doses of tocilizumab for each patient within 2 hours of the infusion if needed

Additional Toxicities Associated with CAR T-cells


- B cell aplasia and hypogammaglobulinemia
 - "On target, off tumor" toxicity of successful CD19 CAR T-cell therapy
 - IVIG replacement may be used to mitigate risk of infection
- Infections (neutropenic and opportunistic)
- Prolonged cytopenias
 - Neutropenia (15% gr3 after day 30; thrombocytopenia 20% gr3)

Cellular and Humoral Toxicities of CAR-T Therapy

Immune titer status post CAR-T

Sero-titer status post BCMA CAR-T appears lower than CD19 CAR-T

Some CAR-T cell clinical trials for solid tumors

Malignancy	Phase	Ν	Name of Trial	Therapeutic Compounds	Clinical Trial Identifier	Status
GPC3 Positive Hepatocellular Carcinoma	1/2	60	CAR-T Cell Immunotherapy for HCC Targeting GPC3	GPC3	<u>NCT02723942</u>	Completed
Carcinoma, Hepatocellular	1/2	30 [*]	A Study of GPC3 Redirected Autologous T Cells for Advanced HCC (GPC3-CART)	GPC3	<u>NCT02715362</u>	Recruiting
Advanced Lung Cancer	1	22 [*]	CAR-T Cell Immunotherapy for Advanced Lung Cancer	PD-L1	<u>NCT03330834</u>	Not Yet Open
Advanced Solid Tumor	1/2	40 [*]	CTLA-4 and PD-1 Antibodies Expressing MUC1-CAR-T Cells for MUC1 Positive Advanced Solid Tumor	MUC1	<u>NCT03179007</u>	Recruiting
Colon Cancer, Esophageal Carcinoma, Pancreatic Cancer, Prostate Cancer, Gastric Cancer, Hepatic Carcinoma	1/2	60*	A Clinical Research of CAR T Cells Targeting EpCAM Positive Cancer (CARTEPC)	EpCAM	<u>NCT03013712</u>	Recruiting
Pancreatic Cancer	1	30 [*]	A Study of Mesothelin Redirected Autologous T Cells for Advanced Pancreatic Carcinoma (meso-CART)	Mesothelin	NCT02706782	Recruiting

Novel CAR-T Approaches for Cancer Therapy

New tumor targets:

- CD22 targeting CAR-T
- Bispecific CAR19/CAR20 CAR- T
 - AML targets CD33 CAR-T
 - T-ALL CD7 and CD5 CAR-T
- Many others in development

Allogeneic CAR-T products:

- Off the shelf availability
- Non-viral vectors with controlled CAR insertion (CRSISP-Cas9)
- NK CAR cell products (iPS derived, large volume manufacturing)
- NK cell therapeutics
- CAR-T allogeneic off-the-shelf products with multiple modifications to disrupt HLA, B2M and TCR

Many questions remain

- Toxicity there is a need to reduce the risks and to better identify risk factors
- Relapse prevention (need to better understand it, for example loss of CD19 and poor CAR T cell function)
- Clinical Care preventive use of steroids and/or Tociluzumab ?
- Standardization of CRS and ICANS management
- Strategy to prioritize investigational therapies (allo CAR T, NK CAR, New autologous T cells CAR-T constructs) vs SOC CAR-T products
- Need to avoid delay in referrals (advanced patients)
- Need to avoid delays in apheresis& CAR-T approval work closely with payors to ensure pre-authorization
- Timing of CAR-T therapies and other effective treatment such of autologous HCT, allogeneic HCT (B-ALL, Mantle cell lymphoma, 2nd line therapy for DLBCL)

University of Minnesota Blood and Marrow Transplant and Cellular Therapy Program Minneapolis, MN

Center of Experimental Therapeutics Masonic Cancer Center

Thank You.