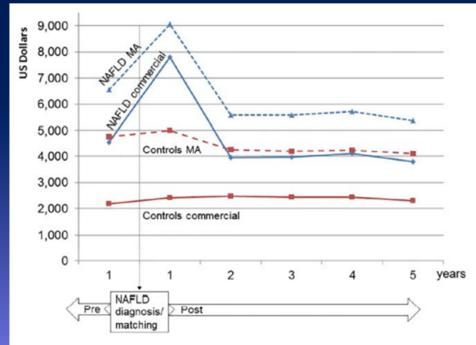


Non Alcoholic Fatty Liver Disease (NAFLD)

January 2022


Arema A Pereira, MD Gastroenterology and Hepatology The Everett Clinic a Part of Optum

DISCLOSURE STATEMENT

- In accordance with the Accreditation Council for Continuing Medical Education's (ACCME) Standards for Integrity and Independence in Accredited Continuing Education, OptumHealth Education (OHE) requires all those in control of educational content to disclose their financial relationships with ineligible companies within the prior 24 months. Ineligible companies are defined by the ACCME as companies whose primary business is producing, marketing, selling, re-selling, or distributing health care products used by or on patients. Individuals must disclose all financial relationships, regardless of the amount, with ineligible companies and regardless of their view of the relevance of the relationship to the education. OHE ensures that the content is independent of commercial bias.
- Dr. Cohen has disclosed that he serves on an advisory board for Pfizer.
- The remaining activity faculty or planners have no financial relationships to disclose.

NAFLD: A Silent Epidemic

- Most prevalent liver disease in human history- 2 billion globally, 30% US population
- Established risk factor for the leading causes of death- Cancer, CVD and DMII
- Associated with increased health care costs

Annual total health care costs of NAFLD patients compared with matched controls in reference to the date of index (first) NAFLD diagnosis – Allen et al, Hepatology 2018; 68:2230-2238

Defining Nonalcoholic Fatty Liver Disease

- Requires evidence of hepatic steatosis- imaging or histology
- Absence of secondary etiologies of hepatic fat accumulation- such as significant alcohol consumption, long-term use of steatogenic medications, hepatitis C virus infection, monogenic hereditary disorders, severe malnutrition, and Wilsons

Steatosis (NAFL)

- Hepatic steatosis
- <u>No</u> evidence of hepatocellular injury (ballooning)
- No evidence of fibrosis

Steatohepatitis (NASH)

- Hepatic steatosis
- Inflammation
- Evidence of hepatocyte injury (ballooning)
- · Presence or absence of fibrosis

NAFLD = MAFLD (Metabolic associated fatty liver disease)

Chalasani N, et al. Hepatology 2018;67:328-357 Sanyal AJ, et al. Hepatology 2011;54:344-353

Alcohol is an important confounding factor

	AASLD (2018)	EASL (2016)	Asia-Pacific (2017)
Definition of significant alcohol consumption	 Men: 21 standard drinks/week or 294 g/week 	Men: 30 g/dayWomen: 20 g/day	 Men: 2 standard drinks/day or 140 g/week
	 Women: 14 standard drinks/week or 196 g/week 		 Women: 1 standard drink/day or 70 g/week

- Arbitrary thresholds based on levels above which risk of cirrhosis is higher
- Moderate alcohol consumption associated with decreased improvement in steatosis or resolution of NASH*

*Ajmer V et al, Clinical Gastroenterol Hep 2018; 16:1511-1520

Chalasani N, et al. Hepatology 2018;67:328-357

European Association for the Study of the Liver. J Hepatol 2016;64:1388-1402

Wong VW, et al. J Gastroenterol Hepatol 2018;33:70-85

Pathogenesis of NAFLD

- Excessive importation of FFA from adipose tissue
- Diminished hepatic export of FFA

Figure 1. Pathogenesis of NAFLD. The development and progression of NAFLD occurs through 'multiple hits' involving a complex interaction between genetic factors and the release of free fatty acids (FFAs), inflammatory cytokines and adipokines. Insulin resistance and oxidative stress represent key pathogenic features in the progression toward advanced fibrosis and cirrhosis. NAFL = Non-alcoholic fatty liver; NASH = Non-alcoholic steatohepatitis.

Hasham and Talal; Healio May 2016

Modifiers of NAFLD

 Factors influencing the course of NAFLD can be broadly divided into comorbid illness, genetic factors, microbial products, and nutritional/behavioral factors

Comorbidities	Genetic	Microbiome products	Nutrition and behavior
 Obesity Metabolic syndrome Insulin resistance Type 2 DM Dyslipidemia Hypertension OSA PCOS Hypopituitarism Low GH Low testosterone 	 PNPLA3 TM6SF2 A1AT Pi*Z HSD17B13 LYPLAL1 GCKR MBOAT DNA methylation Chromatin remodeling Non-coding RNAs 	 ETOH Lipopolysaccharide Reactive oxygen species Cholesterol oxidation products Butyrate Acetate Phenylacetate Secondary bile acids Choline deficiency 	 Alcohol Cholesterol Fructose Exercise Coffee
 Thyroid disease LAL-D Iron overload Psoriasis Osteoporosis 	Black = association with ev Red = established associat Green = protective Bold = drives NASH prog	lion	

Recommendations for screening for NAFLD

	AASLD (2018)	EASL (2016)	Asia-Pacific (2017)
Screening for NAFLD	Systematic screening of the g	eneral population not recommende	ed
	 No screening recommended due to lack of evidence of cost- effectiveness to support screening even in high-risk groups 	 Recommend screening in patients with obesity, T2DM, MetS (A2) Recommend screening in patients with persistently abnormal liver enzymes 	 Consider screening in patients with obesity or T2DM (B2)
	 "Vigilance" in high-risk groups 	(A1)	
 Lean NAFLD i not obese 	is prevalent in Asia, whe	re almost a quarter of pati	ients with NAFLD are

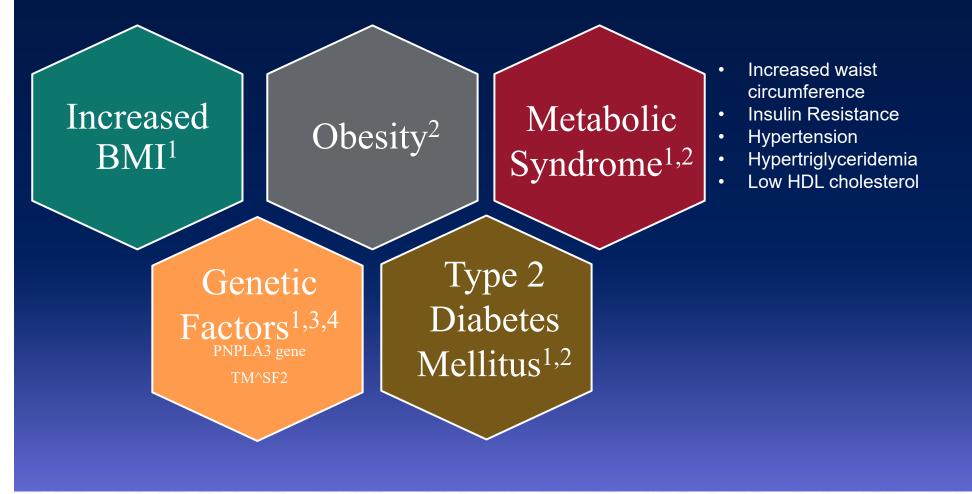
All guidelines agree that noninvasive tools should be used to stratify patients as low or high risk for advanced fibrosis

Chalasani N, et al. Hepatology 2018;67:328-357 European Association for the Study of the Liver. *J Hepatol* 2016;**64**:1388-1402 Wong VW, et al. *J Gastroenterol Hepatol* 2018;**33**:70-85

Common Clinical Scenarios

- Incidental Steatosis
- Persistently elevated liver enzymes

PCPs can consider fatty liver in at-risk patients with three questions:


- **1**. Does the patient have risk factors for NAFLD?
- **2.** If the answer is "yes", does the patient have evidence of NAFLD?
- **3.** If the answer is "yes", does the patient have evidence of significant

fibrosis by non-invasive tests?

Dinani A, et al. An algorithm for the management of non-alcoholic fatty liver disease in primary care. *Gastroenterol Hepatol Open Access*. 2021;12(4):114–122

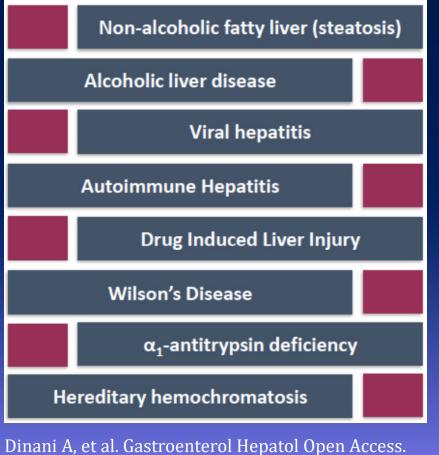
NAFLD Risk Factors

SEARCH FOR RISK FACTORS – Patients at higher risk of disease progression

BMI = body mass index; HDL = high-density lipoprotein; NASH = nonalcoholic steatohepatitis; PNPLA3 = patatin-like phospholipase domain-containing protein 3; TM6SF2 = transmembrane 6 superfamily member 2.

1. Marengo A, et al. Clin Liver Dis. 2016;20(2):313–324; 2. Chalasani N, et al. Hepatology. 2018;67(1):328–357; 3. Diehl AM, et al. N Engl J Med. 2017;377:2063–2072; 4. Anstee QM, et al. Semin Liver Dis. 2015;35:270–290.

When NAFLD is suspected


Recommendation 1: Identify patients at risk for NAFLD based on the presence of ≥ 1 of the following:

- Obesity, defined as body mass index (BMI) $\geq 30 \text{kg/m}^2$
 - o Asian patients: $\geq 25 \text{kg/m}^2$
- Increased waist circumference (≥35 inches for women, ≥40 inches for men)
 - o Asian patients: >32 inches for women, >35 inches in men
- Hyperglycemia
 - o T2DM or glycosylated hemoglobin $\geq 5.7\%$ or fasting glucose ≥ 100 mg/dL
- Fatty liver on imaging

Dinani A, et al. An algorithm for the management of non-alcoholic fatty liver disease in primary care. *Gastroenterol Hepatol Open Access*. 2021;12(4):114–122

Consider other diseases that cause liver steatosis

Recommendation 2: All patients identified as at-risk for NAFLD should be investigated for other causes of chronic liver diseases and metabolic comorbidities

Dinani A, et al. Gastroenterol Hepatol Open Access. 2021;12(4):114–122 Chalasani N, et al. Hepatology 2018;67:328-357 o Typical lab panel
Hemogram
CMP
HBV, HCV
TSH
Celiac screen
Iron panel
Ferritin
Hemoglobin A1c
Lipid panel

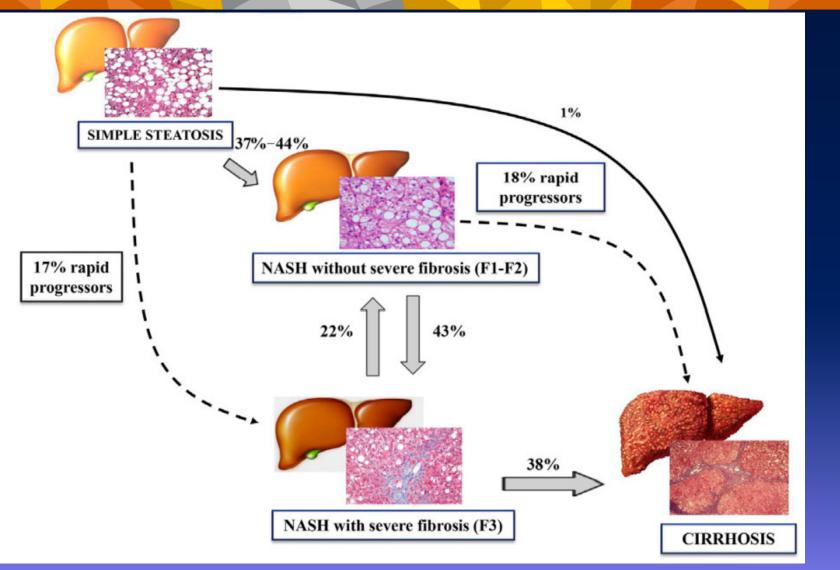
A1AT quantification Ceruloplasmin ANA, ASMA, AMA, SPEP

Confusing lab findings to be aware of in NAFLD

o Serum ferritin

- o Often mildly elevated, does not reflect iron overload
- o If ferritin and transferrin saturation are elevated
 - o Exclude genetic hemochromatosis
 - o Consider liver biopsy to assess hepatic iron quantitation

o ALT can be normal in up to 50% of persons with NAFLD.


o elevated ALT and AST levels do not always correlate with the severity of liver damage.
o An upper limit of normal for ALT of 35 U/L for men and 25 U/L for women is recommended to guide management decisions

o Serum autoantibodies

- o Frequently detected, often in low titers epiphenomenon
- o Presence of antibodies does not impact natural history of NAFLD
- o Exclude autoimmune hepatitis if significant elevation of liver enzymes (>5x ULN) or elevated globulins

Valenti L, et al. Gastroenterology 2010;138:905-912 Vuppalanchi R, et al. Hepatol Int 2012;6:379-385 Sanyal D, et al. Indian J Endocrinol Metab. 2015;19(5):597–601.

Fibrosis: Predictor of Disease Progression and of Negative Outcomes

Marengo A, et al. Progression and Natural History of Nonalcoholic Fatty Liver Disease in Adults. Clin Liver Dis. 2016 May;20(2):313-24

Diagnosis of NASH

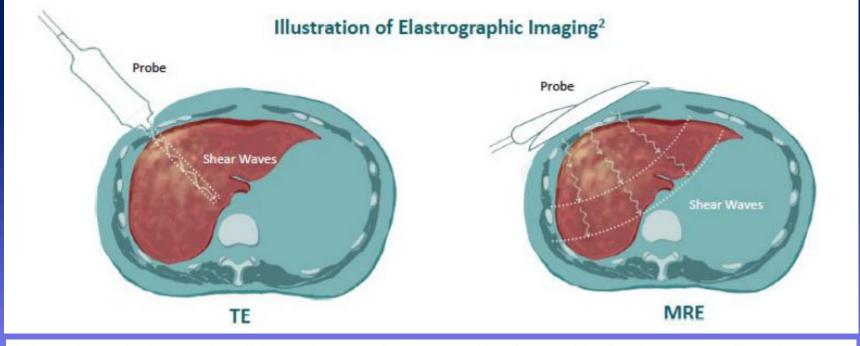
- Liver Biopsy is the gold standard by which NASH diagnosis is established
- Limitations:
 - Risks involved
 - Painful
 - Costs
 - Sampling errors
 - Histologic interpretation

Diagnosis of NASH- Noninvasive Scores

Diagnostic Panel	N	AUROC	Cutoff Values	Se (%)	Sp (%)	PPV (%)	NPV (%)	Study Reference
BARD score	827	0.81 *0.78	2	91 72	66 64	43	96	Harrison et al.
NAFLD Fibrosis Score	733	0.88 *0.85	<-1.455 >0.676 <-1.455 >0.676	80 47 90 64	74 98 60 97	52 82	88 80	Angulo et al.
FIB4 index	541	0.80	<1.30 >2.67	74 33	71 98	43 80	90 83	Shah et al.
Fibrotest	267	0.88	0.3 0.7	95 25	71 97	31 56	99 91	Ratziu et al.
ELF panel	192	0.90	0.3576	80	90	71	94	Guha et al.

BARD score: Body mass index (BMI), AST/ALT ratio diabetes; **NAFLD Fibrosis score:** Age, hyperglycemia, BMI, platelet count, albumin, AST/ALT ratio; **FIB4 index:** age, ALT, AST, platelet count; **Fibrotest:** alpha-2 macroglobulin, haptoglobin, GGT, total bilirubin, apolipoprotein A1; **ELF panel** (Enhanced Liver Fibrosis Panel): age, hyaluronic acid, TIMP 1 (tissue inhibitor of metalloproteinase 1), PIIINP (amino-terminal propeptide of type III collagen).

Easy calculators of Fibrosis in Adults with NAFLD


- Serologic markers Simple:
- • FIB-4 Fibrosis-4 Index
- NFS NAFLD Fibrosis Score
- • APRI index- Aspartate Aminotransferase to Platelet Ratio

Fibrosis 4 Score		APRI Index		NAFLD Fibrosis	
Aga (Voars)		Upper Limit of Normal AST :	34	Impaired Fasting Glucose/Diabetes:	NO *
AST		AST:	AST	Age:	(years)
		Platelet Count :	PLT	AST:	AST
ALT		Patenet Count :	PU	ALT:	ALT
Platelets Using ukot/L for AL	1/4 572 (3	CALCULATE		Platelet Count :	Platelets
CONTROL OF ALL				BMI:	BM
		Formula :	The APRI is used to rule-	Albumin :	Albumin
		[(AST / ULN AST) x 100] / Platelets (10°/L]]	out significant fibrosis and cirrhosis in Hep C and NAFLD.	CALCULATE	
		Explanation of Result :		Formula :	The NAFLD Fibrosis score is a non-invasive scoring
				-1.675 + 0.037 × age (years) +	
				0.094 × BMI (kg/m2) + 1.13 × IF0/diabetes (yes = 1, no = 0)	laboratory tests that help to estimate the amount of
Online tools	can be used	for the calculation	on of APRI.	+ 0.99 × AST/ALT ratio - 0.013	
			and the second secon	× platelet (×109/I) - 0.66 ×	score has been studied in
FIB-4, and M		nich are based or	routinely	albumin (g/dl)	liver disease NAFLD only.
		atient data ^{1,2}		Explanation of Result :	

1 Chalasani N, et al. Hepatology 2018;67:328-357 2 http://gihep.com/calculators/hepatology

Diagnosis of NASH- Imaging/ Elastography

- Liver stiffness steadily increases with increase in fibrosis¹
- Non-invasive techniques can be used to measure liver stiffness (kPa) that correlates with fibrosis²
- Two clinically useful imaging tools for detecting advanced fibrosis are³
 - 1. Transient Elastography (TE)
 - 2. Magnetic Resonance Elastography (MRE)

Venkatesh SK, et al. J Magn Reson Imaging. 2013;37(3):544-555.
 Mikolasevic I et al. World J Gastroenterol 2016;22(32):7236–7251;
 Chalasani N, et al. Hepatol. 2018;67:328-357.

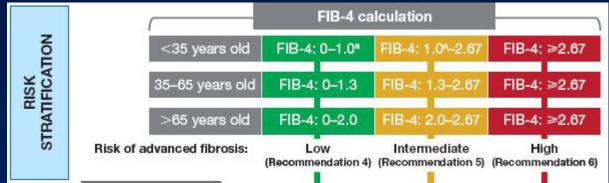
Transient Elastography

- Important to recognize its limitations
 - May overestimate fibrosis when:
 - Non-fasting state
 - Flare of transaminases with hepatitis
 - Extrahepatic biliary obstruction
 - Liver congestion

Hugo Perazzo, et al, "Factors That Could Impact on Liver Fibrosis Staging by Transient Elastography", International Journal of Hepatology, 2015, 5 pages.

Recommendations for screening for NASH Fibrosis

	AASLD (2018)	EASL (2016)	Asia-Pacific (2017)
Fibrosis assessment	 NFS, FIB-4, and elastography No algorithm provided for preferred sequence of testing 	 NFS and FIB-4 to risk- stratify low versus medium/high risk for significant fibrosis Hepatology referral for medium/high-risk patients for further testing with elastography and identifying those who need liver biopsy 	 No specific recommendation regarding preferred tests or algorithm


Liver biopsy remains the gold standard for differentiating NAFL from NASH and staging liver fibrosis. Proceed with liver biopsy if: (1) suspicion for NAFLD advanced fibrosis (2), or concern for coexisting or competing etiology of chronic liver disease (B2).

Chalasani N, et al. Hepatology 2018;67:328-357 European Association for the Study of the Liver. *J Hepatol* 2016;**64**:1388-1402 Wong VW, et al. *J Gastroenterol Hepatol* 2018;**33**:70-85

Risk stratification and fibrosis assessment

 Recommendation 3: For each at-risk patient identified, calculate fibrosis-4 index (such as FIB-4) score to determine whether the patient has minimal (FIB-4: <1.3, F0-1), indeterminate (FIB-4: 1.3–2.67), or likely

advanced fibrosis (FIB-4: >2.67, \geq F3)

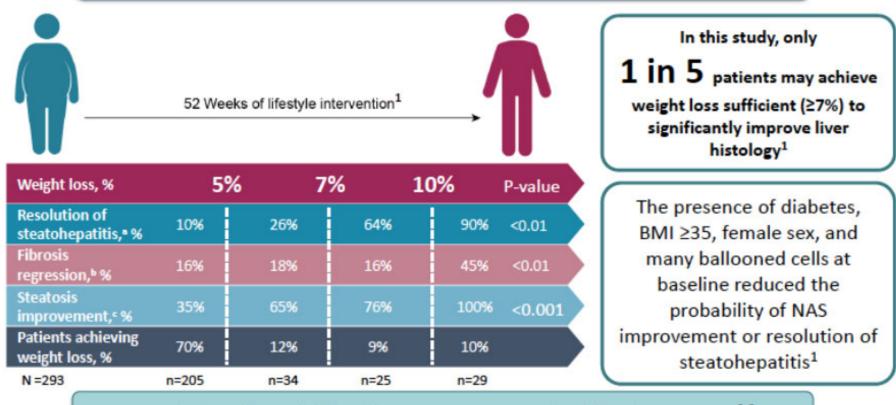
- **Recommendation 4:** Patients with FIB-4 <1.3 have minimal fibrosis. These patients can be managed by their PCP
- Recommendation 5: Patients with FIB-4 1.3–2.67 have an indeterminate fibrosis score and should have a second non-invasive test such as Fibro Sure or ELF (serology-based tests) or liver stiffness (imaging based elastography)
- **Recommendation 6:** Patients with FIB-4 >2.67 have a 97% likelihood of advanced fibrosis and should be referred to a hepatologist

Dinani A, et al. Gastroenterol Hepatol Open Access. 2021;12(4):114-122

Recommendations for management of NAFLD

AASLD (2018)	EASL (2016)	Asia Desifia (2017)			
	LASE (2010)	Asia-Pacific (2017)			
Target weight loss of 7% to 10% TBW (B1). Achieve with 500-1000 daily caloric deficit and moderate-intensity exercise, preferably in a structured weight loss program (C2).					
 No specific recommendations related to specific macronutrient diets or exercise regimens 	 Mediterranean diet, avoidance of processed foods and added fructose (B1) 	• No specific recommendations related to specific macronutrient diets or exercise regimens			
There are currently no approve	ed drugs to treat NAFLD or NASH. F	łowever, multiple drugs are			
in phase 3 development. In patients with cardiovascular indications, statins can be safely					
used in patients with NASH and	d compensated cirrhosis (B1)				
 Vitamin E 800 IU daily can be considered in nondiabetic patients with biopsy-proved NASH without cirrhosis Pioglitazone 30 mg daily can be considered in patients with and 	 Pharmacotherapy should be reserved for patients with NASH fibrosis (stage F2 or higher) or NASH with high risk for disease progression (T2DM, MetS, elevated ALT) (B1) No firm recommendations 	 Pioglitazone recommended only in patients with prediabetic or diabetic NASH for short-term use (B2) No firm recommendation can 			
	 No specific recommendations related to specific macronutrient diets or exercise regimens There are currently no approve in phase 3 development. In pat used in patients with NASH and Vitamin E 800 IU daily can be considered in nondiabetic patients with biopsy-proved NASH without cirrhosis Pioglitazone 30 mg daily can be considered 	 No specific recommendations related to specific macronutrient diets or exercise regimens Mediterranean diet, avoidance of processed foods and added fructose (B1) There are currently no approved drugs to treat NAFLD or NASH. H in phase 3 development. In patients with cardiovascular indication used in patients with NASH and compensated cirrhosis (B1) Vitamin E 800 IU daily can be considered in nondiabetic patients with biopsy-proved NASH without cirrhosis Pioglitazone 30 mg daily can be considered 			

(A2)


Chalasani N, et al. Hepatology 2018;67:328-357 European Association for the Study of the Liver. *J Hepatol* 2016;**64**:1388-1402 Wong VW, et al. *J Gastroenterol Hepatol* 2018;**33**:70-85

TREATMENTS

Weight loss Lifestyle **Bariatric Surgery** Insulin sensitizers Metformin Thiazolidinediones (pioglitazone) Glucagon-like Peptide-1 Analogues Vitamin E **Statins** Coffee Vitamin D

Weight loss is the cornerstone of NASH management

Increased likelihood of NASH resolution and fibrosis improvements was associated with higher degrees of weight loss¹

Weight loss through lifestyle interventions can be difficult to sustain^{2,3}

*Resolution of steatohepatitis was defined as absence of the histologic features of definite steatohepatitis, which required lack of hepatocellular ballooning with no fibrosis impairment. ^bRegression was defined as a decrease of at least 1 point in the fibrosis score. ^cImprovement in steatosis, ballooning, lobular formation, and portal inflammation scores were defined as a reduction of at least 1 point as compared with baseline values with no fibrosis impairment.

Vilar-Gomez E, et al. Gastroenterology 2015; 2:367-378
 Managing Overweight and Obesity in Adults. *NIH 2013 accessed December 19th 2021* Anderson IW.et al. *Am I Clin Nutr 2001: 74*:579-584

Interventions - Exercise

- The majority of NAFLD patients are engaged in minimal physical activity.
- Exercise improves hepatic steatosis
- Optimal exercise regimen
 - Maintain physical activity >150 min/week
 - Exercise > 5x week
- Best outcomes if exercise is combined with weight loss

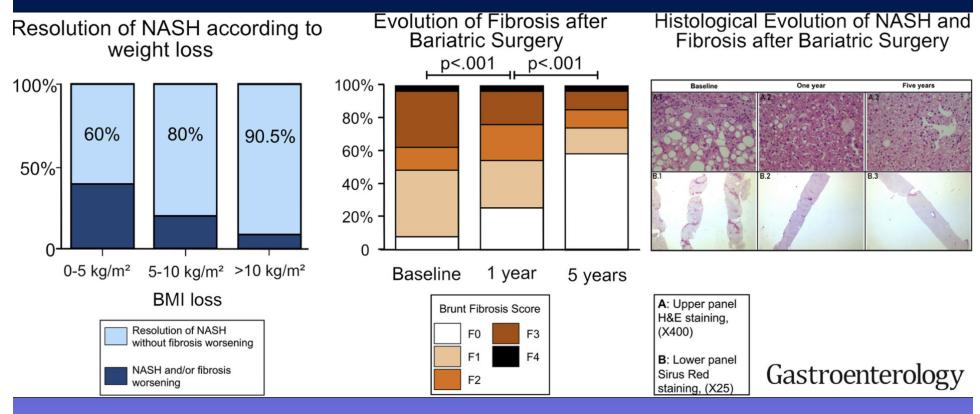
Kistler KD, et al. Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease. Am J Gastroenterol 2011;106:460-468.

Interventions – Dietary modifications

- Mediterranean diet
- Caloric control
- Ingestion of food without labels
- 60 ml of extra virgin olive oil
- Nuts
- Avoidance of high fat foods: animal fat and red meat
- Coffee > 2 cups/day

Ryan M.C. et al. *J. Hepatol.* 2013;59:138–143 Vilar-Gomez E, et al. Gastroenterology 2015; 2:367-378 Chalasani N, et al. Hepatology 2018;67:328-357 Kennedy OJ, et al. Alimentary Pharm Therap 2016; 5:562-574.

Treatment and Monitoring


Recommendation 7: All patients identified with NAFLD should be counselled on lifestyle modification around weight loss and physical activity

- Weight loss is the best therapy for NAFLD
- Carbohydrate restriction is the most effective diet
 - Patients who lose 10% body weight typically resolve NAFLD
 - Weight loss usually results in improved AST and ALT and improved metabolic parameters
- Exercise reduces hepatic fat but should be recommended in combination with weight loss
- Alcohol use should be discouraged

Interventions – Bariatric Surgery

In a long-term follow-up of 180 patients with NASH who underwent bariatric surgery in France

- resolution of NASH in liver samples from 84% of patients 5 years later.
- reduction of fibrosis is progressive, beginning during the first year and continuing through 5 years

Lassailly G, et al. Bariatric Surgery Provides Long-term Resolution of Nonalcoholic Steatohepatitis and Regression of Fibrosis. Gastroenterology. 2020 Oct;159(4):1290-1301.

AASLD Guidance – Bariatric Surgery

- 1. Bariatric surgery can be considered in otherwise eligible obese individuals with NAFLD or NASH
- Bariatric surgery is not yet an established option to specifically treat NASH
- **3**. Type, safety and efficacy of bariatric surgery in otherwise eligible patients with cirrhosis is not established

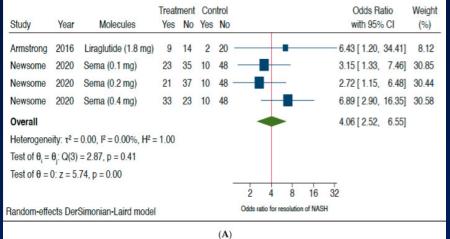
Insulin Sensitizers-AASLD Guidance

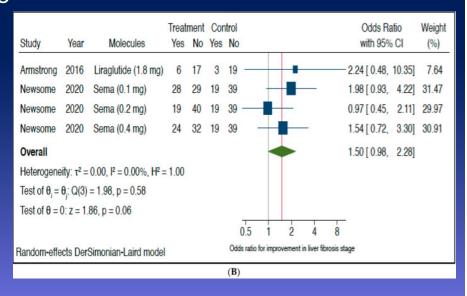
- 1. Metformin may improve serum aminotransferases
- 2. Improves insulin resistance
- 3. No significant improvement in liver histology

Not recommended for treatment of NASH but should be considered as first-line pharmacologic therapy for those with NAFLD and T2DM

Marchesini G, et al. Lancet 2001;358:893-894

Nair S, et al. Aliment Pharmacol Ther 2004;20:23-28


Bugianesi E, et al. Am J Gastroenterol 2005;100:1082-1090


PPARy agonist - AASLD Guidance

- In biopsy proven NASH, Pioglitazone improves histology in patients with and without diabetes
- 2. Risks and benefits should be discussed with each patient
- 3. Should not be used to treat NAFLD without biopsy proven NASH

Glucagon-like Peptide-1

- Forest plot and pooled estimates of the effect of GLP-1 RAs (n = 2 RCTs included using either liraglutide 1.8 mg/day or semaglutide at a dose of 0.1 mg, 0.2 mg or 0.4 mg/day subcutaneously) on
- A- histologic resolution of NASH with no worsening of liver fibrosis
- B- improvement in liver fibrosis stage without worsening of NASH as compared with placebo.

Mantovani A, et al. Glucagon-Like Peptide-1 Receptor Agonists for Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: An Updated Meta-Analysis of Randomized Controlled Trials. Metabolites. 2021 Jan 27;11(2):73.

Treatment and Monitoring

Recommendation 8: All patients identified with NAFLD should work with their PCP to manage medical comorbidities

- Treat components of metabolic syndrome with medication as indicated
 - Statins should be used if indicated not contraindicated in patients with liver disease
 - Antihypertensive agents as indicated beta-blockers should not be used as first-line treatment (may promote weight gain)
 - Preferred medications for diabetes include metformin, sodiumglucose co-transporter-2 inhibitors (SGLT2i), and glucagon-like peptide-1 (GLP-1) agonists
 - Pioglitazone may cause weight gain but may benefit patients with NAFLD
 - Insulin and sulphonylureas should be avoided
 - Consider bariatric surgery referral in those with clinical indication

Treatment and Monitoring

Recommendation 9: At each clinic visit, patient smoking status and detailed alcohol history should be obtained

- Smoking is a risk factor for the development of hepatic fibrosis and HCC
- Advice on keeping alcohol consumption to a minimum should be encouraged

Vitamin E- PIVENS trial

Vitamin E at 800 IU/day Pioglitazone 30mg/day Placebo 247 patients in total

Variable

NASH CAN RESOLVE BUT FIBROSIS STAYS THE SAME

variable	Placebo	Vitamin L	Pioginazone	P value		
				Vitamin E vs. Placebo	Pioglitazone vs. Placebo	
Primary outcome†						
No. of subjects randomly assigned	83	84	80			
Subjects with improvement (%)	19	43	34	0.001	0.04	
Changes from baseline in histologic features						
No. of subjects with biopsy specimens at baseline and 96 wk	72	80	70			
Steatosis						
Subjects with improvement (%)	31	54	69	0.005	<0.001	
Mean change in score	-0.1	-0.7	-0.8	<0.001	<0.001	
Lobular inflammation						
Subjects with improvement (%)	35	54	60	0.02	0.004	
Mean change in score	-0.2	-0.6	-0.7	0.008	<0.001	
Hepatocellular ballooning						
Subjects with improvement (%)	29	50	44	0.01	0.08	
Mean change in score	-0.2	-0.5	-0.4	0.03	0.01	
Total NAFLD activity score (mean change)	-0.5	-1.9	-1.9	<0.001	<0.001	
Fibrosis‡						
Subjects with improvement (%)	31	41	44	0.24	0.12	
Mean change in score	-0.1	-0.3	-0.4	0.19	0.10	
Resolution of definite nonalcoholic steatohepatitis (% of subjects)	21	36	47	0.05	0.001	

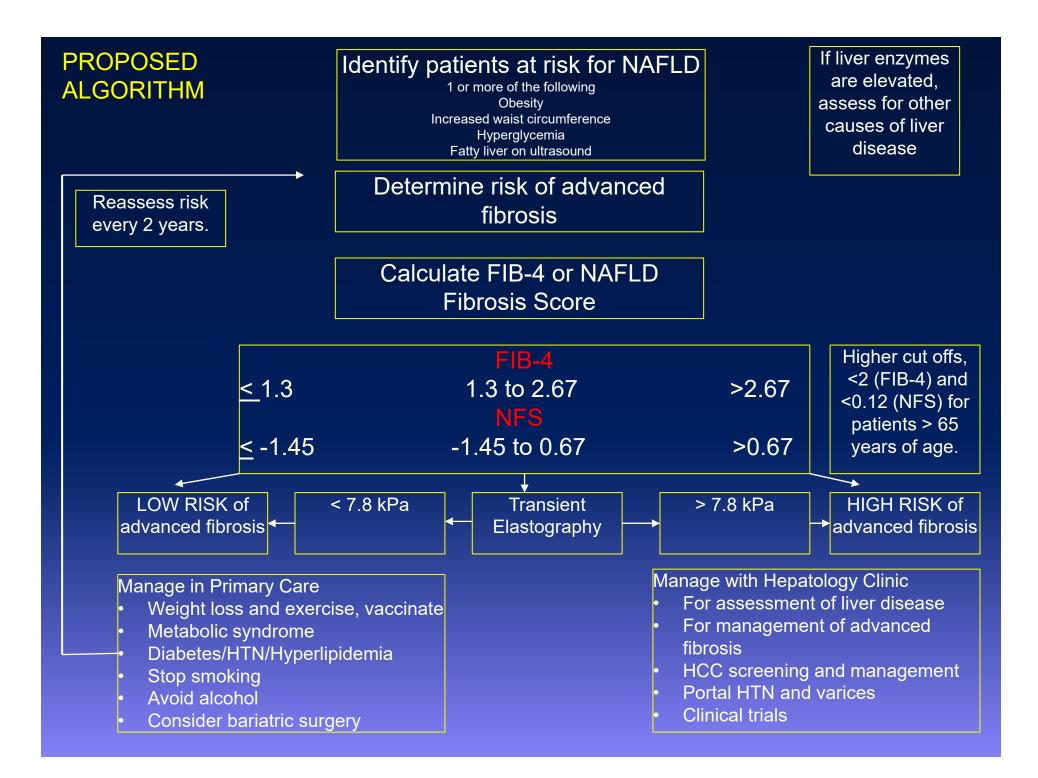
Placebo

Vitamin E Pioglitazone

P Value*

Sanyal AJ, Chalasani N, Kowdley KV, et al; NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362: 1675–85.

Vitamin E - AASLD Guidance


- Vitamin E 800 IU/day improves liver histology in nondiabetic with biopsy proven NASH
- 2. Risk and benefits should be discussed with each patient
- Vitamin E is not recommended to treat NAFLD without biopsy proven NASH

Interventions- Vitamin D

Vitamin D deficiency (<20ng/ml) is present in 55% of patients with biopsy proven NAFLD

Vitamin D may be protective against inflammation

Nelson JE, et al. Vitamin D Deficiency Is Associated With Increased Risk of Non- alcoholic Steatohepatitis in Adults With Non-alcoholic Fatty Liver Disease: Possible Role for MAPK and NF-κB? Am J Gastroenterol. 2016 Jun;111(6):852-63.

Conclusions

- NAFLD is an epidemic with a rising mortality and healthcare cost.
- Non invasive tests for fibrosis are a cost-effective method of stratifying patients in low- and high-risk groups.
- Weight loss is a crucial part of NASH management. No current FDA approved medications are available.
- PCPs are overburdened, so the addition of ancillary staff to assist with dietary and lifestyle changes are essential to the effective management of these patients.

Acknowledgements/Recommended reading

Non-Alcoholic Fatty Liver Disease An Update in Diagnosis, Management and Treatment Guidelines 2021 by Federico Rodríguez-Pérez, MD, AGAF, FAASLD San Juan, Puerto Rico

NAFLD/NASH – Optimizing Therapies for Maximal Benefit by Karen L. Krok, MD, ACG 2021

Dinani A, Sussman N, Noureddin M, et al. An algorithm for the management of nonalcoholic fatty liver disease in primary care. *Gastroenterol Hepatol Open Access*. 2021;12(4):114–122

Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018 Jan;67(1):328-357