Cardiac Surgery in Patients with End-Stage Liver Disease

Rodrigo Vianna, MD, PhD
Director of Transplant Services
Professor and Chief, Liver and Gastrointestinal Transplant Programs
The Andreas Tzakis Chair in Transplant Surgery
University of Miami/ Jackson Memorial Hospital
Miami Transplant Institute

Miracles made daily.

Background

- Cirrhotic patients with coronary artery disease (CAD) or valvular heart disease are a challenging population;
- Most liver transplant centers require treatment of cardiac disease before consideration for listing;
- Inability to proceed with cardiac surgery can prevent these patients from proceeding to a lifesaving liver transplantation;
- Increase in the elderly, obese, diabetic population in need of transplantation continues to incresse

Heart Surgery and End-Stage Liver Disease

Cardiac Operations in Patients With Cirrhosis

John D. Klemperer, MD, Wilson Ko, MD, Karl H. Krieger, MD, Michelle Connolly, MD, Todd K. Rosengart, MD, Nasser K. Altorki, MD, Samuel Lang, MD, and O. Wayne Isom, MD

Department of Cardiothoracic Surgery, New York Hospital-Cornell University Medical Center, New York, New York

Background. A retrospective review was performed to determine the outcome after cardiac operations in patients with a documented history of noncardiac cirrhosis.

Methods. The charts of patients admitted to the cardiothoracic surgical service between 1990 and 1996 were reviewed, and 13 patients with a preoperative history of cirrhosis were identified. The severity of preoperative liver disease was graded according to the criteria of Child.

Results. Most of the cases of cirrhosis were alcoholrelated. Eight patients were classified as having Child class A and 5 as having Child class B cirrhosis. One hundred percent of patients with Child class B and 25% of those with Child class A cirrhosis had major complications. The postoperative chest tube output and transfusion requirements of these patients were approximately three times higher than average. The overall perioperative mortality rate was 31%. In patients with Child class B cirrhosis, the mortality rate was 80%. No patient with Child class A cirrhosis died. Deaths were related to gastrointestinal and septic complications, and not to cardiovascular failure.

Conclusions. These findings suggest that patients with minimal clinical evidence of cirrhosis can tolerate cardiopulmonary bypass and cardiac surgical procedures, whereas those with more advanced liver disease should not be offered operation.

> (Ann Thorac Surg 1998;65:85-7) © 1998 by The Society of Thoracic Surgeons

13 patients with history of non cardiac cirrhosis (N10 Alcohol related)

Severity of disease graded according to Child Criteria; (N8 – Child A)

Table 1. Preoperative Patient Characteristics

Patient No.	Age (y)	Sex	Cause of Cirrhosis	Child's Class	Bilirubina (mg/dL)	Ejection Fraction	Other Diseases
1	56	M	ЕТОН	A	2.1	****	DM, COPD, PVD
2	63	F	Viral	В	***	0.50	CRI
3	59	M	ETOH	В	3.2	0.50	DM
4	61	M	ETOH	A	1.5	0.40	***
5	71	M	ETOH	A	0.6		***
6	60	M	ETOH	A	1.6	0.50	
7	68	M	ETOH	A	0.8	0.19	DM
8	79	M	ETOH	A	0.6	0.55	DM
9	64	F	Viral	A	1.0	0.30	222
10	76	M	PBC	A	0.4	0.74	DM, CRI, CVA
11	78	M	ETOH	В	2.6	0.20	CHF
12	62	M	ETOH	В	3.1	24.2	DM, COPD, CRI, PVD
13	53	M	ETOH	В	1.8	0.25	CRI, pacemaker

^{*} Preoperative total serum bilirubin level (normal range, 0.2–1.3 mg/dL).

CHF = congestive heart failure; COPD = chronic obstructive pulmonary disease; accident; DM = diabetes mellitus; ETOH = alcohol-related; F = female; peripheral vascular disease; viral = viral hepatic/postnecrotic.

CRI = chronic renal insufficiency; CVA = cerebrovascular M = male; PBC = primary biliary cirrhosis; PVD =

Miami Transplant Institute

(Ann Thorac Surg 1998;65:85-7)

© 1998 by The Society of Thoracic Surgeons

- 7 out of 13 patients experienced significant postoperative morbidity;
- The 5 patients with Child B cirrhosis had multiple post operative complications and high postoperative ICU and Hospital stays
- The 4 deaths occurred in patients with moderate impairment of liver reserve
- All patients with Child A survived the operation

Table 2. Operations and Postoperative Complications

Patient No.	Type of Operation	Urgency of Operation	Type of Complication	Intensive Care Unit Stay (h)	Hospital Stay (days)	Death
1	CABG	EL	207	46	9	No
2	AVR	U	I, P, G, N, RE	640	27	Yes
3	CABG, AVR	U	I, N, R, E	530	27	Yes
4	CABG	EL		42	11	No
5	CABG	U	177	32	10	No
6	AVR	U	177	24	7	No
7	CABG	U	I, RE	39	8	No
8	CABG	EL	122	46	10	No
9	AVR	EL		30	7	No
10	AVR	U	N	122	15	No
11	CABG, AVR	U	I, P, G, RE	408	31	No
12	CABG	EM	R, P	336	14	Yes
13	CABG, MVR, TR	U	I, R, P, G, RE	768	56	Yes

Clinical Outcome After Cardiac Operations in Patients With Cirrhosis

Nobuhiko Hayashida, MD, Takahiro Shoujima, MD, Hideki Teshima, MD, Yoshinori Yokokura, MD, Kazuyoshi Takagi, MD, Hiroshi Tomoeda, MD, and Shigeaki Aoyagi, MD

Department of Surgery, Kurume University, Kurume, Japan

 1989 to 2003 - 18 patients with non cardiac cirrhosis who needed cardiac surgery

10 patients with Child A

7 patients with Child B

1 patient with Child C

15 patients underwent surgery using cardiopulmonary bypass

60% with Child A and 100 % of class B and C had major postoperative complications, including infections, respiratory failure, bleeding and gastrointestinal disorder

502 HAYASHIDA ET AL CARDIAC OPERATIONS IN CIRRHOSIS Ann Thorac Surg 2004:77:500-5

Table 1. Preoperative Patient Characteristics

Patient No.	Age	Sex	Cardiac Disease	Other Diseases	NYHA	Urgency
1	54	F	MSR, ASR	***	2	N
2	62	M	ASD, MR	***	2	N
3	64	F	IHD, MR	DM	2	N
4	72	F	MS	Post OMC, CRF, PMI, DM	3	N
5	65	F	MS	HCC	2	N
6	45	M	IHD	CRF	3	Y
7	67	M	AS	Post HCC resection, DM	3	N
8	48	M	AR	Gastric cancer, HT	2	N
9	78	F	AS	SSS, hypothyroid	2	N
10	73	M	IHD	PVD, hypothyroid	2	N
11	76	F	DA	Post-MCT and RF for HCC	4	Y
12	73	F	MS	***	3	N
13	81	M	IHD	***	4	Y
14	44	M	CP	Post-PAPVD repair	3	N
15	49	M	PVL, TR	Post-AVR and MVR	4	N
16	73	M	IHD	PVD, RCC	2	N
17	58	M	IHD	DM	2	N
18	73	M	IHD	171	2	N

Miami Transplant Institute

Miracles made daily.

Table 2. Preoperative Liver Function

Patient No.	Cause of LC	Varices	Ascites	Encephal	TB (mg/dL)	Alb (g/dL)	PT (%)	A/G	ChE (U/L)	Child-Pugh class
1	Viral	7-8	-	-	1.8	3.1	71	0.8	95	A
2	Congest	-	-	-	1.9	3.6	71	1.2	99	A
3	Alcohol	-	-	-	0.8	3.8	66	1.3	107	A
4	Viral	+	+	-	1.9	4.0	54	1.1	65	A
5	Viral	+	_	_	1.1	4.0	82	1.1	101	A
6	Viral	+	-	_	1.0	2.1	90	0.6	127	A
7	Viral	: <u>=</u>	-	_	0.9	3.9	49	1.1	75	A
8	Viral	100	-	_	0.6	3.9	67	1.2	132	A
9	PBC	+			0.7	3.5	73	1.0	116	A
10	Alcohol	: <u>#</u>	_		0.8	4.3	96	1.2	92	A
11	Viral	+	_		1.9	2.6	72	0.8	115	В
12	Viral	+	_		0.8	3.1	92	0.7	65	В
13	Alcohol	+		-	1.9	3.5	63	1.1	58	В
14	Unknown	+	+	-	3.6	4.3	54	1.4	90	В
15	Viral	72	+	-	1.5	2.8	68	0.8	77	C
16	Viral	200	+	-	0.7	3.0	56	0.8	57	В
17	Viral	702	2.5	-	0.8	3.1	59	0.5	55	В
18	Viral	15.00			2.4	2.8	66	0.7	66	В

A/G = albumin to globulin ratio; Alb = albumin; Alcohol = alcohol-related; Encephal = encephalopathy; LC = liver cirrhosis; PBC = primary biliary cirrhosis;

ChE = cholinesterase; PT = prothrombin time; Congest = congestive liver; TB = total bilirubin.

Table 3. Operative Information and Postoperative Complications

Patient No.	Cardiac Operation	CPB Time (min)	ICU Stay (days)	Complications	Death
1	AVR, MVR, TAP	179	4	В	N
2	ASD repair, MAP, TAP	86	3	***	N
3	MVR, CABG	251	5	I	N
4	MVR, TAP	143	3	Asthma, PL	N
5	MVR, TAP	106	24	R, GI	N
6	CABG	175	2	ARF	N
7	AVR	141	3	***	N
8	AVR	125	2	***	N
9	AVR	109	3	***	N
10	CABG	123	4	I	N
11	Ascend Ao Rep	213	28	I, B	Y
12	MVR	150	3	I	N
13	CABG	97	30	ARF, R, I, GI	Y
14	Pericardiectomy	67	2	ARF, PL, HA	N
15	AVR, MVR, TVR	293	100	ARF, R, I, GI, B, HA	Y
16	OPCAB		6	***	N
17	OPCAB		3		N
18	OPCAB		2	ARF	N

ARF = renal failure; Ascend Ao Rep = ascending aortic replacement; B = bleeding;CABG = coronary artery bypass grafting; CPB = cardiopulmonary bypass; GI = gastrointestinal disorder; HA = hyperammonemia; I = infection; ICU = intensive cure unit; MAP = OPCAB = off-pump coronary artery bypass grafting; mitral annuloplasty; PL = pleural effusion; R = respiratory failure; TVR = tricuspid valve replacement. Other abbreviations as listed in Table 1.

Table 4. Morbidity and Mortality According to Child-Pugh Classification

Classification	Morbidity	Mortality
Patients undergoing CPB		,
Child-Pugh class A	40% (4/10)	0% (0/10)
Child-Pugh class B	100% (4/4)	50% (2/4)
Child-Pugh class C	100% (1/1)	100% (1/1)
Patients undergoing OPCAB	CONTRACTOR OF THE CONTRACTOR	
Child-Pugh class B	33% (1/3)	0% (0/3)

CPB = cardiopulmonary bypass; bypass grafting. OPCAB = off-pump coronary artery

Child Pugh Classification

Encephalopathy

- None (1 point)
- Grade 1: Altered mood/confusion (2 points)
- Grade 2: Inappropriate behavior, impending stupor, somnolence (2 points)
- Grade 3: Markedly confused, stuporous but arousable (3 points)
- Grade 4: Comatose/unresponsive (3 points)

Ascites

- Absent (1 point)
- Slight (2 points)
- Moderate (3 points)

Bilirubin

- <2 mg/dL (1 point)</p>
- O 2-3 mg/dL (2 points)
- >3 mg/dL (3 points)

Albumin

- >3.5 g/dL (1 point)
- O 2.8-3.5 g/dL (2 points)
- <2.8 g/dL (3 points)</p>

Prothrombin time prolongation

- Less than 4 seconds above control/INR <1.7 (1 point)
- 4-6 seconds above control/INR 1.7-2.3 (2 points)
- More than 6 seconds above control/INR >2.3 (3 points)

5 to 6 points: Child class A

7 to 9 points: Child class B

10 to 15 points: Child class C

Miracles made daily.

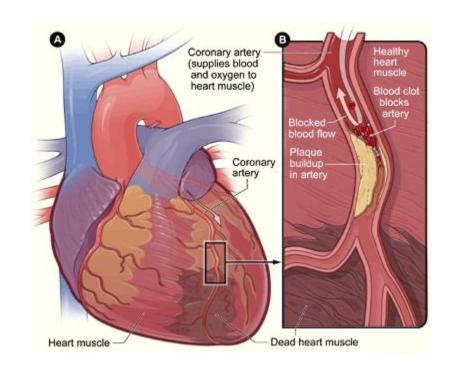
Cardiac Disease and Liver Transplantation

AASLD PRACTICE GUIDELINE

Evaluation for Liver Transplantation in Adults: 2013 Practice Guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation

Paul Martin, Andrea DiMartini, Sandy Feng, Robert Brown, Jr., and Michael Fallon

This practice guideline has been approved by the American Association for the Study of Liver Diseases and the American Society of Transplantation and represents the position of both Associations. disciplinary approach to the evaluation of this complex group of patients who have the comorbidities typical of middle age, recommendations have been developed to assist in their cardiac management.⁵ With an increasing number of long-term survivors of LT there has been a



Prevalence of CAD in liver transplant

 Equal or higher than non cirrhotic population
 5-28%

Coronary Artery Disease

CAD is at least as frequent in LT candidates as in general population and is influenced by typical cardiovascular risk factors

Noninvasive Echocardiography is indicated in all adult LT candidates

Patients with advanced liver disease may be unable to achieve target heart rate during standard exercise test

Pharmacological stress tests (adenosine, dipyridamole, dobutamine) can be used

Cardiac catheterization if CAD cannot be excluded (bleeding, renal dysfunction)

Coronary Artery Disease in Orthotopic Liver Transplantation: Pretransplant Assessment and Management

Javed Ehtisham, ¹ Mario Altieri, ² Ephrem Salamé, ² Eric Saloux, ¹ Isabelle Ollivier, ³ and Martial Hamon ^{1,4}

¹Departments of ¹Cardiology, ²Surgery, ³Hepato-Gastroenterology, University Hospital of Caen, Normandy, France, and ⁴Unit 744, National Institute of Health and Medical Research, Lille, France

CORONARY ARTERY DISEASE IN OLT 551

Study	Number of Patients	Prevalence of Coronary Artery Disease*	Definition of Significant Coronary Artery Disease
Carey et al. ⁸ (1995)	37	28% (15.2-43.1)	>70% stenosis
Morris et al. ⁹ (1995)	608	5.7% (4.0-7.7)	Criteria not described
Donovan et al. ¹⁰ (1996)	165	2.9% (0.7-6.3)	>50% stenosis
Plotkin et al. 11 (1998)	40	7.1% (0.5-17.4)	>70% stenosis
Tiukinhoy-Laing et al. 12 (2006)	161	20.3% (14.4-26.8)	>70% stenosis
Blei et al. ³ (2007)	161	24.5% (18.2-31.4)	>70% stenosis
Fili et al. ¹³ (2009)	627	3.0% (1.8-4.5)	>50% stenosis

*Midpoint of the adjusted Wald interval with the 95% confidence interval.

Clinical burden of screening asymptomatic patients for coronary artery disease prior to liver transplantation.

Filì D, Vizzini G, Biondo D, Pietrosi G et al Am J Transplant. 2009 May;9(5):1151-7

- 627 liver transplant candidates over ~ 8 years period.
- 16 patients had a previous diagnosis of CAD or symptoms suggestive (2.5%).
- The remaining 611 underwent further tests according to a predefined protocol, including EKG, echocardiogram and, on the basis of CAD risk factors: stress tests.
- Selective coronary angiography (SCA) was performed in the 30 patients with positive heart stress test: in <u>only 2 did</u> <u>SCA show any CAD</u>, and in both it was subcritical disease requiring neither intervention nor contraindicating LT.
- Prevalence ~3 % of advanced CAD

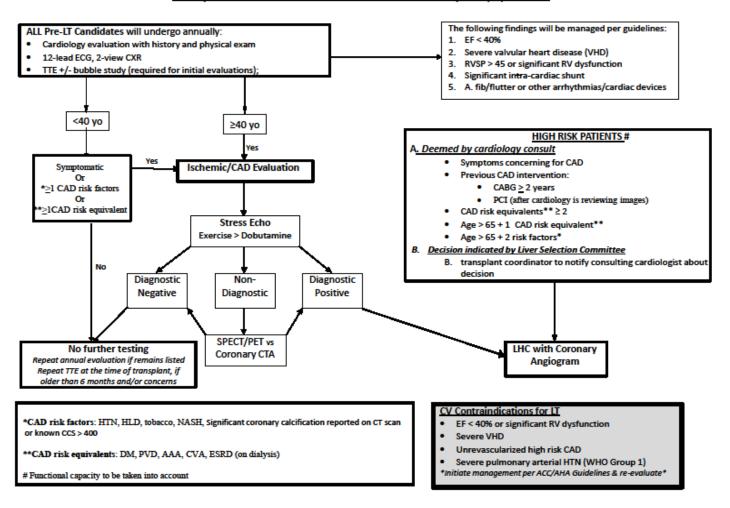
Liver transplantation outcome in patients with angiographically proven coronary artery disease: a multi-institutional study.

Wray C, Scovotti JC, Tobis J et al

Am J Transplant. 2013 Jan;13(1):184-91

- Retrospective study of 630 patients who underwent coronary angiography prior to transplantation at 7 institutions over a 12-year period.
- Obstructive CAD (defined as > 50% stenosis of 1 or more vessels).
- Obstructive CAD was present in 151 (55 moderate, 96 severe) of 630 patients

Prevalence was 24 %, significant differences between centers


Prevalence of CAD in liver transplant

- 3- 28 % varies and depends on many factors:
 - testing method
 - transplant center
 - patient demographic
- Reasons:
 - candidate age, diabetes, obesity, and NASH contribute to an observed incidence of CAD that exceeds in the US population

Cardiovascular risk assessment of the liver transplant candidate

- In addition to advanced age and the presence of comorbidities, there
 are specific cardiovascular responses in cirrhosis that can be
 detrimental to the LT candidate.
 - Patients with cirrhosis demonstrate <u>increased cardiac output</u> and a <u>compromised ventricular response</u> to stress, a condition termed <u>cirrhotic</u> <u>cardiomyopathy</u>.
 - decreased beta-agonist transduction,
 - increased circulating inflammatory mediators with cardio-depressant properties
 - · repolarization changes
 - Low systemic vascular resistance and bradycardia are also commonly seen in cirrhosis and can be aggravated by beta-blocker use
- Non-obstructive lesions (< 50 % stenosis) can be responsible for acute coronary syndromes (unstable angina, myocardial infarction, or sudden cardiac death) often as a result from rupture of coronary plaques.

Pre-Operative Cardiovascular Evaluation of Liver Transplant (LT) Patients

CAD and Liver transplantation

If significant coronary stenosis unsuitable to stenting (> 70% stenosis) is detected revascularization may be attempted prior to LT (low meld scores – child A)

Cardiac surgery carries a signicant risk especially in decompnsated cirrhosis

Coronary Stenting

- Is increasingly performed prior to LT;
- Bare metal stents are preferred in order to avoid dual antiplatelet therapy;
- Recent outcomes have demonstrated superior outcomes in patients who have undergone single stenting with single vessels disease compared to outcomes for patients with prior CABG for multivessel disease; (con – anticoagulation)
- High Meld patients (>30) may not have the luxury to wait due to increase mortality and risk for bleeding

Combined Cardiac Surgery and LT

CASE REPORTS

Combined Cardiac Surgery and Liver Transplantation

Devin E. Eckhoff,* Luc Frenette,[†] Marty T. Sellers,* Brendan M. McGuire,[‡] Juan L. Contreras, * John S. Bynon, * and David C. McGiffin[§]

During evaluation for liver transplantation, a 63-year-old man with cirrhosis secondary to hepatitis C was diagnosed with severe aortic stenosis (aortic valve area, 0.87 cm²) and coronary artery disease. A combined procedure involving aortic valve replacement (pericardial xenograft), coronary artery bypass surgery, and orthotopic liver transplantation was performed. Convalescence was uneventful, and at 2 years after the procedure, the patient has normal cardiac function, good prosthetic valve function, and biochemically normal liver function. (Liver Transpl 2001;7: 60-61.)

tion greater than 0.55, aortic valve velocity of 4.35 m/s (peak instantaneous gradient, 76 mm Hg), aortic valve area of 0.87 cm², and minimal left ventricular hypertrophy. Left heart catheterization showed obstructive disease in the proximal left anterior descending coronary artery and an aortic valve area of 0.92 cm² (peak-to-peak gradient, 62 mm Hg). Pulmonary artery pressures measured 40/14 mm Hg, with a mean of 22 mm Hg and cardiac index of 2.87 L/min/m²).

The cardiac and liver transplant teams' assessment was that the severity of cardiac disease precluded liver transplantation before aortic valve replacement, and the severity of liver

Cardiac Surgery and LT

Original Paper

Concomitant cardiac surgery and liver transplantation: an alternative approach in patients with end stage liver failure?

Perfusion
[-8]
© The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0267659120966549
journals.sagepub.com/home/prf

Sanjay Chaubey, Azhar Hussain, Daad Badar Zakai, Salman Butt, Prakash Punjabi and Jatin Desai

Perfusion - 2020

Cardiac surgery only

Table 2. Demographic data, post-operative morbidity and mortality in patients with ESLD undergoing isolated cardiac surgery.

Age	Year of operation	Sex	Comorbidity	Cardiac pathology	Cardiac operation	Logistic EuroSCORE (%)	Cause ESLD	MELD score	Child Pugh score (grade)	Post-operative compli- cations	Current status	Cause of death
60	2008	М	NYHA3; smoker; hy- pertension; poor LV	SBE	AVR/MVR	19.4	Alcoholic cir- rhosis	17	9 (B)	Arrhythmias; renal dys- function; septicemia	Dead (in hospital)	MOF
83	2009	М	CCS4; NYHA4; smoker; hypertension; poor LV; diabetic	CAD	CABG	27.5	Hepatitis B	9	5 (A)	Pleural effusion; chest infection; AF; renal impairment; deli rium	Alive	NA
64	2010	F	NYHA4; renal dysfunc- tion; jaundice; ascites	SBE	AVR	14.6	Primary biliary drrhosis	27	11(0)	Chest infection; VRE bacteremia; dostridium difficie diarrhoea; sacral sore, pulmonary odeama; pleural effu- sion; PV bleeding; VT; AF; dialysis	Dead (in hospital)	MOF
57	2012	F	CCS2; NYHA2; ex- smoker; hypertension; ascites	AS	AVR	3.37	Cryptogenic drrhosis	15	9 (B)	Pleural effusion; AF; renal impairment	Alive	NA
65	2015	F	CCSI; NYHA3; smoker; hypertension	AS	AVR	4.9	Al coholic cir- rhosis	7	5 (A)	Bleeding resternotomy for tamponade; AF; pulmonary odema	Dead (in hospital)	liver failure
57	2015	М	CCS2; smoker; asthma; diabetic; hypertension	Atrial myxoma	Excision of atrial myxoma	5.12	Hepatocellu- lar carcinoma	8	6 (A)	Chest infection; bleed- ing hemiplegia, AF	Dead (in hospital)	MOF
50	2017	М	CCS4; NYHA4; smoker; hypertension; poor LV; jaundice; ascites	CAD	CABG	7.12	Hepatitis C	13	8 (B)	Bleeding: resternoto- my; renal impairment	Dead (in hospital)	MOF

A.F. atrial fibrillation; ARF: acute renal failure; AS: Aortic Stenosis; AVR: Aortic Valve Replacement; CABG: Coronary Artery Bypass Grafting; CAD: Coronary Artery Disease; CCS: Caradian Cardiovascular Society score; CMV: cytomegalovirus; LV: left ventricle; MOF: Multi-organ failure; MVR: Mitral Valve Replacement; NYHA: New York Heart Association classification; PV: per vaginal; SBE: Subacute Bacterial Endocarditis; TV Reg. Tricuspid Valve Regurgitation; VT: ventricular tachycardia.

Concomitant surgery and LT

Table 1. Demographic data, post-operative mortality and morbidity in patients undergoing concomitant OLT and cardiac surgery.

Age	Year of operation	Sex	Comorbidity	Cardiac pathology	Cardiac operation	Logistic Euro SCORE (%)	Cause ESLD	MELD score	Child Pugh score (grade)	Post operative compli- cations	Total FU	Current status	Cause of death
21	2004	F	NYHA2; renal dysfunction; poor LV; jaundice; encepha- lopathy; ascites	TV Reg	TV repair	41.2	Ischemic	22	10 (C)	Brain injury, chest infection; AF; ARF; septicernia	3 months	Dead (in hospital)	Anoxic brain injury post CPR in theater
55	2006	F	CCS2:renal dysfunc- tion; smoker; mod LV; jaundice; ascites	CAD	CABG	20.1	Primary biliary cirrhosis	н	9 (B)	Chest infection; pleural effusion; AF; ARF; laparoscopic abdominal washout; CMV viremia	lyear Il months	Dead	Liver failure
60	2009	М	NYHA3; smoker; hypertension; ascites	AS	AVR	11.3	Alcoholic cimhosis	21	12 (C)	Respiratory failure; ARF; pericardial drain- age; septicemia	20 days	Dead (in hospital)	fungal infection of the aonta resulting in tamponade
64	2010	F	Jaundice	AS	AVR	6.8	Cryptogenic cimhosis	17	9 (B)	None	8years 4months	Alive	NA
50	2012	M	NYHA2; Diabetic; hypertension; Moder- ate LV	AS	AVR	6.8	Hepatitis B & C	10	8 (B)	None	6years 6months	Alive	NA
73	2012	М	Pulmonary fibrosis; renal dysfunction; smoker; jaundice; as- cites; encephalopathy	SBE	AVR	368	Cryptogenic cirrhosis	12	11 (C)	Pulmonary effusion tachycardia; worsening renal impairment;	6years 5months	Alive	NA
61	20 15	М	Hypertension; jaun- dice; ascites; encepha- lopathy; obese	AS	AVR	7.7	Alcoholic cimhosis	7	9 (B)	Pulmonary effusion; renal impairment; septicemia	3years 11 months	Alive	NA
54	2018	М	NYHA2; dabetic; jaundice; ascites	AS	AVR	6.8	Hepatitis C	16	11 (C)	Stemal osteomyelitis, stemal rewiring; pulmo- nary oedema; pleural effusion; ARF; duodenal ulter; septicemia	3months	Alive	NA

AF: atrial fibrillation, ARF: acute renal failure; AS Aortic Stenosis; AVR: Aortic Valve Replacement; CABG: Coronary Artery Bypass Grafting; CAD: Coronary Artery Disease; CCS: Canadian Cardiovascular Society score; CMV: cytomegalovirus; LV. left ventride; MVR: Mitral Valve Replacement; NYHA: New York Heart Association dassification; SBE: Subscute Bacterial Endocarditis; TV Reg: Tricuspid Valve Regurgitation.

Safety and Outcomes of Combined Liver Transplantation and Cardiac Surgery in Cirrhosis

Ashley Wood, DO, Bijan Eghtesad, MD, K. V. Narayanan Menon, MD, Maan Fares, MD, Michael Zhen-Yu Tong, MD, Vikram Sharma, MD, Rocio Lopez, MS, and Jamak Modaresi Esfeh, MD

Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio; Department of Transplant Surgery, Cleveland Clinic, Cleveland, Ohio; Departments of Gastroenterology/Transplant Hepatology, Cleveland Clinic, Cleveland, Ohio; Department of Heart/Vascular Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; and Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio

Background. Decompensation of liver function after cardiac surgery in patients with cirrhosis has resulted in high morbidity and mortality. A treatment strategy, for which there is a scarcity of data in the literature, encompasses combined liver transplantation and cardiac surgery.

Methods. We performed a retrospective analysis of prospectively collected data on 15 patients who underwent combined liver transplantation and cardiac surgery between 2005 to 2017 at our institution.

Results. Between 2005 and 2017, 15 patients with cirrhosis and coronary artery disease or valve disease were identified who underwent combined liver transplantation and cardiac surgery. The cardiac disease was considered severe enough to preclude liver transplantation alone. Likewise, the advanced cirrhosis precluded cardiac surgery alone. Eighty percent of the

patients were male and average age was 60 years. Six patients had coronary artery disease, 2 patients had severe aortic stenosis and coronary artery disease, 1 patient had severe mitral regurgitation and coronary artery disease, 2 patients had severe aortic stenosis, 1 patient had mitral valve prolapse, and 3 patients had severe aortic insufficiency. The mean model for end-stage liver disease score was 24. Four subjects were Child-Pugh class B, and 11 were class C. One-year survival was 73.3%.

Conclusions. Combined liver transplant and cardiac surgery is feasible in this selected, otherwise inoperable, patient population with an acceptable early and midterm survival when performed in high volume centers with a cohesive multidisciplinary team.

> (Ann Thorac Surg 2021;111:62-8) © 2021 by The Society of Thoracic Surgeons

Pathway

Patients with cardiac disease undergoing liver transplant work up Percutaneous intervention is not feasible

Consideration for concomitant cardiac surgery and liver transplant

Table 1. Patient Characteristics

Pt. No.	Age (y)	Sex	Etiology of Liver Cirrhosis	Cardiac Diagnosis	Chem. MELD Score	Chem. MELD-Na Score	Child-Pugh Class
1	64	M	NASH	CAD	20	25	С
2 65	F	Hepatitis C	AI	20	20	В	
3 72	M	NASH	CAD	27	27	C	
4 69	M	Hepatitis C	AS	20	20	C	
5 66	M	Cryptogenic	AS, CAD	22	22	В	
6 63	M	NASH	AS, CAD	25	27	C	
7 41	M	Alcohol	AI	22	24	C	
8 50	M	HH	CAD	18	18	C	
9 55	M	Hepatitis C	CAD, MR	22	22	В	
10 66	M	Alcohol	CAD	37	37	C	
11 61	F	Hepatitis C	CAD	22	22	C	
12 58	F	NASH	CAD	25	25	c	
13 59	M	NASH	HOCM, AI, MVP	27 27	В		
14 51	M	Alcohol	AI	27	27	C	
15 62	M	Hepatitis C	AS	22	22	C	

AI, aortic insufficiency; AS, aortic stenosis; CAD, coronary artery disease; Chem, chemical; F, female; HH, hereditary hemochromatosis; HOCM, hypertrophic cardiomyopathy; M, male; MR, mitral regurgitation; MVP, mitral valve prolapse; Na, sodium; NASH, nonalcoholic steatohepatitis.

Miami Transplant Institute

Table 2. Cardiac Assessment

Pt. No.	EF(%)	Operation Performed	No. of Grafts
1	62	LT+CABGx2	2
2	55	LT+AVR	NA
3	61	LT+CABGx3	1
4	65	LT+AVR	NA
5	60	LT+AVR+CABGx1	2
6	65	LT+AVR+CABGx1	1
7	55	LT+AVR	NA
8	55	LT+CABGx2	1
9	55	LT+CABGx2+MVr	2
10	67	LT+CABGx1	3
11	60	LT+CABGx1	1
12	69	LT+CABGx2	2
13	67	LT+AVR+MVR+SM	NA
14	60	LT+AVR	NA
15	65	LT+AVR	NA

AVR, aortic valve replacement CABG, coronary artery bypass graft surgery; LT, liver transplantation; MVr, mitral valve repair; MVR, mitral valve replacement; NA, not applicable; No., number; Pt, patient; SM, septal

Table 3. Postoperative Complications During Hospitalization

Child-Pugh Class	Stroke		Requiring CRRT	Sepsis	Hemorrhage Requiring Operative Reexploration	Postoperative PEA Arrest	ISB Requiring Resection	HRF Requiring Reintubation
В	0 (0)	3	1 (6.7)	0 (0)	0 (0)	0 (0)	0 (0)	1 (6.7)
C	1 (6.7)		3 (20)	2 (13.3)	2 (13.3)	1 (6.7)	1 (6.7)	3 (20)
Total	1 (6.7)	9	4 (26.7)	2 (13.3)	2 (13.3)	1 (6.7)	1 (6.7)	4 (26.7)

Values are n (%). Some patients had more than one complication.

CRRT, continuous renal replacement therapy; HRF, hypoxic respiratory failure; ISB, ischemic small bowel; PEA, pulseless electrical activity; RF, renal failure.

Table 4. Postoperative Course

Pt. No.	Days on Ventilator	Days ICU Stay	Days Hospital Stay	Outcome
1	2	5	19	Alive
2	4	6	18	Alive
3	3	15	40	Dead
4	3	7	15	Alive
5	1	3	19	Alive
6	11	11	11	Dead
7	1	3	12	Alive
8	4	8	11	Alive
9	3	6	15	Alive
10	1	17	38	Alive
11	1	5	12	Alive
12	2	4	35	Dead ^c
13	3	6	26	Alive
14	67	72	84	Deadd
15	7	21	30	Alive

*Septic shock; bHemorrhagic stroke; slechemic stroke, pneumonia; dMyocardial infarction.

ICU, intensive care unit; Pt No., patient number.

Miami Transplant Institute

Cardiac Surgery and LT

DOI: 10.1111/jocs.14344

CASE REPORT

Combined off-pump coronary bypass grafting without heparin and liver transplantation: A novel approach to a complex dilemma

Nicolas A. Brozzi MD¹ | Thiago Beduschi MD² | Tomas Salerno MD³ | Renzo Cifuentes MD¹ | Ali Ghodsizad PhD¹ | Eric Martin MD² | Rodrigo Vianna MD² | Matthias Loebe PhD¹

³Divisions of Thoracic Transplantation, University of Miami Miller School of Medicine, Miami, Florida

²Division of Abdominal Transplantation, University of Miami Miller School of Medicine, Miami, Florida

³Cardiothoracic Surgery of the Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida

Correspondence

Nicolas A. Brozzi, MD, Associate Professor of Surgery, University of Miami Miller School of Medicine, 18011801 NW 9th Av, 5th Floor, Desk, Miami, Fl 33136.

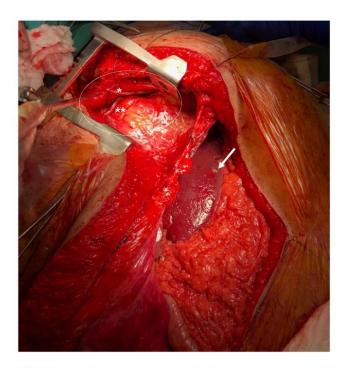
Email: nxb470@med.miami.edu

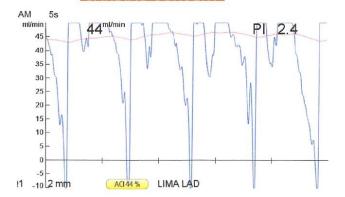
Abstract

Cardiac disease is a leading cause of early mortality for patients undergoing liver transplantation (LT), and severe coronary artery disease (CAD) is usually considered a contraindication for LT in patients with cirrhosis. Incidence of CAD in LT candidates has increased in recent years. While stable patients might be candidates for percutaneous interventions, patients with decompensated liver failure, or critical coronary lesions present a therapeutic challenge, and are often not considered candidates for LT. We present the case of a 60 year old male patient with decompensated liver failure, and critical CAD, who received successful combined off-pump coronary bypass grafting without heparin and LT using ex vivo normothermic liver perfusion machine. This approach represents a novel strategy to offer LT to this very selective group of patients.

KEYWORDS

coronary artery disease, liver transplant, OPCABG





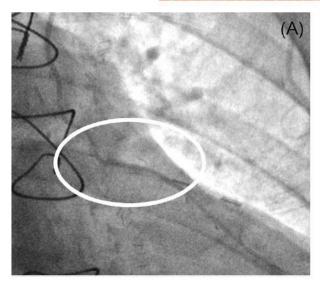
Miracles made daily.

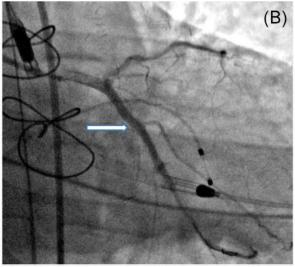
Normothermic Liver Perfusion and CABG

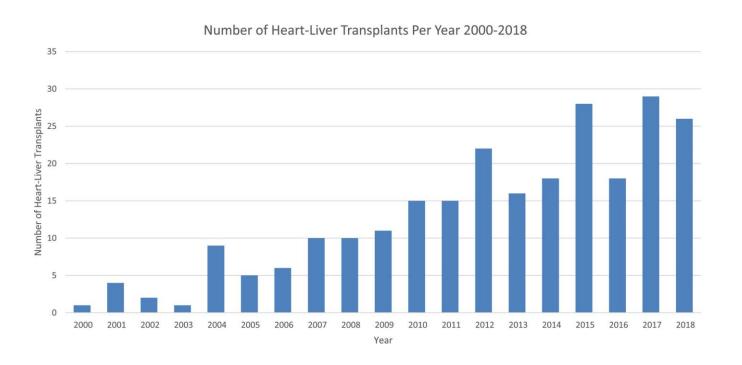
FIGURE 1 Intraoperative image of median sternotomy extended with right subcostal incision. Note the two coronary bypass grafts (blue circle), including LIMA-LAD (*) and SVG-Ramus (**), and the transplanted liver (arrow). LAD, left anterior descending; LIMA, left internal mammary artery; SVG, saphenous vein grafts

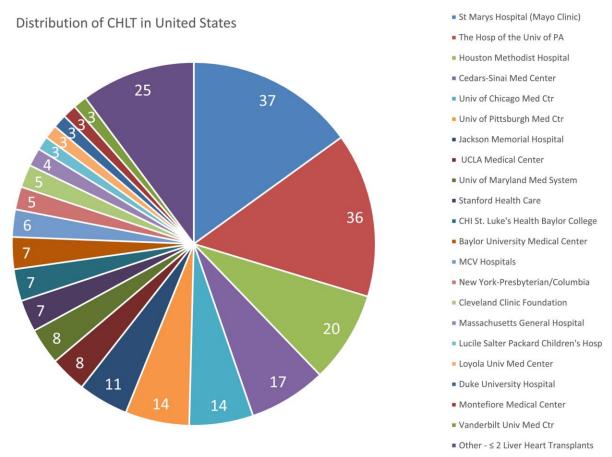
ICARDIAC SURGERY

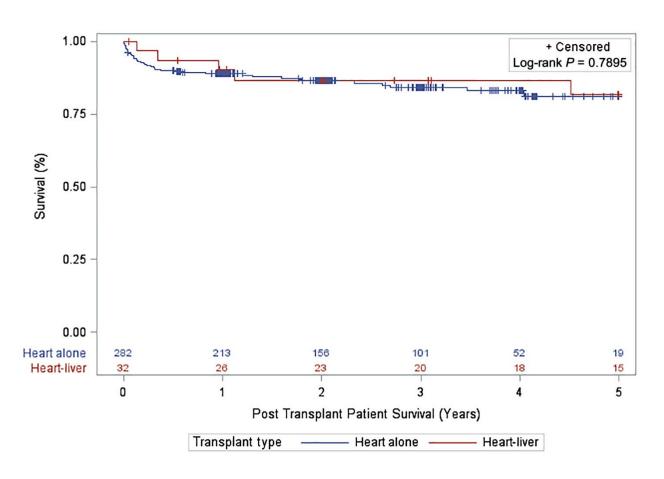
FIGURE 2 Intraoperative measurements of LIMA-LAD coronary bypass graft flows with Doppler ultrasound. LAD, left anterior descending; LIMA, left internal mammary artery


Patient remained with chest open and gently packed to facilitate exposure with extension of median sternotomy with a supraumbilical midline incision with extension to the right. The liver graft remained in the normothermic preservation machine for 10 hours. The donor liver was removed from the perfusion machine after the recipient hepatectomy was concluded, and flushed with preservation solution immediately before the implantation. The liver transplant was performed using the standard piggy-back technique, with anastomosis of the vena cava of the graft with the common ostium of the three hepatic veins, usual portal vein and hepatic artery anastomosis.




month after index operation showing patency of LIMA-LAD bypass graft (white circle), and PCI with stent to left circumflex artery (white arrow). LAD, left anterior descending; LIMA, left internal mammary artery; PCI, percutaneous coronary interventions




Combined Heart and Liver Transplant:

Combined Heart and Liver Transplant:

Combined Heart and Liver Transplant:

SURGICAL TECHNIQUE

En-Bloc Simultaneous Heart-Liver Transplantation in Adult Patients

Nicolas A. Brozzi, MD,* Matthias Loebe, MD,* Fouad Ghazi Souki, MD,‡ Thiago Beduschi, MD,† Ali Ghodzisad, MD,* Akin Tekin, MD,† Astrid Nicolau-Raducu, MD,‡ and Rodrigo M. Vianna, MD†

TABLE 1.	Preoperative	Recipient	Characteristics
----------	--------------	-----------	-----------------

Recipient Characteristics	Patient # 1	Patient # 2	Patient # 3	Patient # 4	Patient # 5
Age, y	63	46	26	51	30
Sex	Male	Male	Female	Male	Female
Race	White	Hispanic	AfroAmerican	White	AfroAmerican
Recipient ABO	A+	O+	AB+	0+	A+
BMI	21	28	21	25	32
Ideal body weight (%)	89	108	98	110	140
Pre-albumin, mg/dL	9	3	6	11	10
Etiology of cardiac disease	ATTR amyloidosis (hereditary-Thr60A1a)	NICM ^o liver/heart pathology: Hemochroma-tosis (Negative genes H63D, C282Y)	Postpartum	Idiopathic NICM	Postpartum
NYHA class	IV	IV	IV	III	IV
LVEF (%)	30	10-15	5	10-15	10-15
Preoperative inotropes	Milrinone	Norepinephrine	Milrinone Dobutamine	Milrinone Dobutamine	Dobutamine
MCS	No	IABP	No	No	No
Etiology of liver disease	Amyloidosis/cardiac cirrhosis	NASH*	Cardiac cirrhosis	Cryptogenic cirrhosis	Cardiac
Na MELD	8	28	21	18	13
INR	1.13	3.24	1.27	1.1	1.37
Creatinine, mg/dL	0.66	0.46	0.56	0.66	0.87
Warfarin	No	No	No	Yes	Yes
Pacemaker/ICD	Life vest	No	ICD	ICD	ICD
Pretransplant hospitalization, days	52	89	61	51	0

BMI, body mass index; ICD, Implantable cardioverter defibrillator; INR, International normalized ratio; MCS, mechanical circulatory support; NICM, non-ischemic cardiomyopathy. "nonalcoholic steatohepatitis,"

Miami Transplant Institute

Miracles made daily.

FIGURE 1. Final aspect of transplanted "en-bloc" heart and liver. Note continuity of IVC, and ligated diaphragmatic veins. Reconstruction of the diaphragm is performed with nonabsorbable suture, leaving space of 2 finger width around IVC to prevent any compression.

Transplant Institute

- 63 year old Hispanic Male under evaluation for OLT
- Past Medical History:
 - Liver Failure secondary to ETOH (last drink in 2019) and/or NASH diagnosed two years ago

 complicated by esophageal variceal bleeding s/p banding, hepatic encephalopathy
 (taking Rfaximin and Lactulose), recurrent ascites (requiring large volume paracentesis yet
 no SBP), anasarca, anemia, atered mental status, and fatigue
 - DMII
 - Hyperlipidemia
 - Hypertension
 - Obesity (83 kilos)
 - Chronic Kidney Disease (baseline creatinine between 1.5-2.0)
 - Colonic Tubular Adenomas (CLS: 9/11/20)
- Past Surgical History: None
- Social History:
 - Family Medicine Practitioner in NaSples
 - Last ETOH drink in 2019 prior to that had 3 glasses of wine per day for greater than 10 years;
 never smoked and no drug use
- MELD Score: 35

Meds from Home prior to Transplant:

```
Aquaphor topical ointment, See Instructions, 6 refills
Crestor 10 mg oral tablet, 10 mg = 1 tab, ORAL,
BEDTIME, 6 refills
furosemide 40 mg oral tablet, 40 mg = 1 tab, ORAL
```

furosemide 40 mg oral tablet, 40 mg= 1 tab, ORAL, BID, 6 refills

lactulose 10 g/15 mL oral syrup, 30 g= 45 mL, ORAL, BID, 6 refills, **Still taking, not as prescribed**: pt stated that he takes TID

metFORMIN 500 mg oral tablet, 500 mg= 1 tab, ORAL, BID, 6 refills

midodrine 5 mg oral tablet, 5 mg= 1 tab, ORAL, TID, 6 refills, **Still taking, not as prescribed**: pt stated that he takes BID

pantoprazole 40 mg oral enteric coated tablet, 40 mg= 1 tab, ORAL, DAILY, 6 refills

rifaXIMin 550 mg oral tablet, 550 mg= 1 tab, ORAL, BID, 6 refills

triamcinolone topical 0.1% cream, 1 app, TOPICAL, BID, 6 refills

Case Presentation – Cardiac Work Up

- 9/4/2020 Stress Echo:
 - EF=60-65%
 - No valvular abnormality
 - Patient unable to walk and achieved 83% of the patient's maximum predicted heart rate with normal BP response.
 - NSVT noted during test with abnormal stress echo report
- 9/8/2020 Cardiac Cath:
 - RCA 100% Ostial Lesion
 - LAD 50-60% Proximal Lesion and 90% Lesi9on after Diagonal 1
 - Diagonal 1 has 20% Ostial and 90% mid diease
 - Type 2 Pulmonary HTN
 - Increased Cardiac Output/Cardiac Index with low SVR consistent with cirrhosis

- Dilemma: Stent Possibility versus Bleeding Risk
- Decision: 1 week trial of DAPT therapy
 - no signs of bleeding proceed with left heart cath and PCI
- Outcome: Patient bled with trial therapy

- What possibilities exist at this time?
 - Not a candidate for liver transplant since unable to proceed with PCI and CABG is too risky pre transplant
 - Attempt to stent knowing bleeding risks anyways versus clotting
 - Plan on CABG simultaneous to liver transplant

What would be your decision?

- CABG x 2 vein graft to LAD and vein graft to OM2 total cardiopulmonary bypass time was 64 min and 53 min clamp time
- Liver Transplant was 3 hours and 9 min
- Chest remained open while liver transplant going in
- S/P transplant and CABG developed wound infection to left lower extremity with culture positive for Klebsiella ESBL requiring debridement and wound vac placement.
- Working allograft noted and improved renal function upon discharge – after 45 days and continues to do well without any further complication

Conclusion

Cardiac surgery can be attempted in patients with Child A in selected patients

Cardiac surgery in cirrhotic patients remains a challenge in patients with advanced disease (Child B and C)

Cardiac surgery can be performed concomitantly with good results in patients undergoing liver transplantation

Severity of disease can have an impact on survival rates and complications with high meld score patients having worse outcomes

Simultaneous Heart/ liver transplant is performed by very few centers in the US. En bloc technique seems to reduce operative times with initial excellent outcomes

Thank you r.vianna@miami.edu

Miami Institute

