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2020 Nobel Prize: Jennifer Doudna, IGl, UC Berkeley 5

Basic science discovery: 2012 -> CRISPR gene editing

Prize shared with Dr Emmanuelle Charpentier



CRISPR has enabled a fundamentally new kind of medicine 5

CRISPR genome editing 101

CRISPR as medicine — clinical trials and track record — September 2021

CRISPR as target discovery engine AND as a medicine for that target

CRISPR horizons — the challenge of “rare” genetic disease



Two CRISPR-edited human beings
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Patrick Doherty (TTR amyloidosis)

V' t . G H kl | I d H https://www.npr.org/sections/health-shots/2019/12/25/784395525/a-young-mississippi-womans-journey-through-a-pioneering-gene-editing-experiment
| C O rl a ray S I C e Ce | S e a S e https://www.npr.org/sections/health-shots/2021/06/26/1009817539/he-inherited-a-devastating-disease-a-crispr-gene-editing-breakthrough-stopped-it
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0.3% of human genome B-form DNA - 12 bp 5

6.6€9 bp diploid in contrast to bacteria and yeast, HIGHLY resistant to targeted change



B-form DNA - 12 bp DNA repair
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DSB — acutely genotoxic

Dividing human cells experience up to 50 DSBs per cell cycle

Multiple pathways of DSB-R highly conserved across evolution



Human ce

lls use two DSB-R pathways
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Schematic courtesy of Dr. Lorraine Symington, Columbia University

A NEW CLASS OF MEDICINES THROUGH DNA EDITING
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Indel of indeterminate number
of nucleotides (1-100)
Cas9-gRNA usually effects insertion of
=1 base pair or deletion of <10 base pairs

Targeted insertion without homology

Ligation of a small fragment
of DNA into site of break

« Inactivation of erythroid enhancer of BCLIIA | | Targeted insertion of F9, encoding factor IX
to treat sickle cell disease or B-thalassemia protein, into locus of ALB (encoding albumin)

« Inactivation of TRAC-CD52 in CAR T cells

« Inactivation of CCRS in T cells to slow
progression of HIV infection
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+ Deletion of exon containing pathologic variant
to “convert” Duchenne’s muscular dystrophy
to Becker's muscular dystrophy

« Deletion of pathogenic triplet-repeat
expansions to treat Huntington's disease

Sequence-specific double-strand break
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Porteus NEJM 2019




2012: Jennifer Doudna + Emmanuelle Charpentier
RNA-guided genome editing

A Programmable Dual-RNA-Guided

DNA Endonuclease in Adaptive
Bacterial Immunity

Martin Jinek,%* Krzysztof Chylinski,g'q* Ines Fonfara,? Michael Hauer,z’r
Jennifer A. Doudna,™**"°+ Emmanuelle Charpentier*t




The origin of Cas9 in CRISPR-type bacterial adaptive immune
systems and its repurposing for genome editing

Genome editing requires a programmable nuclease: an enzyme that can induce a DSB at the locus of interest.

Bacteria have evolved an adaptive immune system that relies on such a nuclease.

It can be programmed to cut a given locus by “arming” it with an RNA complementary to the DNA of interest.

Prokaryotic cell Eukaryotic cell
(immune system) (genome editing)

— Delivery of
genome
editing tools

Custom sgRNA
“ﬁg ; designed by

scientist

Target search

Chromatin

Phage genome

Target DNA cut
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nnovative Genomics Institute | CRISPRpedia



The most impactful experiment in biology in the 21st centuryé

A Programmable Dual-RNA-Guided
DNA Endonuclease in Adaptive
Bacterial Immunity

Martin Jinek,»%* Krzysztof Chylinski,>** Ines Fonfara,* Michael Hauer,*t
Jennifer A. Doudna,>?*°t Emmanuelle Charpentier*}

Cas9 programmed by crRNA:tracrBNA duplex
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How to program Cas9
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I How to program Cas9 5

constant

=

sequence

sgRNA AUCCCUGUACACCCGCGAAA

programmable

AATAACTATTGACCTAGGGACATGTGGGCGCTTTGCCCCCCTTTCAGGTAAACC

ettt
[TATTGATAACTGGATCCCTGTACACCCGCGAAACGGGGGGAAAGTCCATTTGC

SpyCas9 PAM: 5’ NGG 3’



I How to program Cas9 5

AUCCCUGUACACCCGCGAAA

RN
AATAACTATTGACCTAGGGACATGTGGGCGCTTTGCCCCCCTTTCAGGTAAACC

EEEEEE e e TIEREEREEEEEEEFEFERE TRt e e el
[TATTGATAACTGGATCCCTGTACACCCGCGAAACGGGGGGAAAGTCCATTTGC



Genome editing

begins with a DSB ... M RO e
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Innovative Genomics Institute | CRISPRpedia
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Except when it doesn’t

a Genome editing

¢ Insertion of gene(s), deletion
of gene(s), replacement of

gene(s) by DSB
¢ 1-1,000s of nucleotides

® Permanent

¢ Other tools: meganucleases,

TALENS, ZFNs, other CRI
nucleases
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CRISPR-Cas9
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b Base editing

e Single-bp change
by DNA nick

 CAD

Base editor

* Pain
¢ Epigenetic modification
RNA targeting

or
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[
* SNP reversal; cce epe
gene KO
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o Permanent =1
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Deaminase
¢ Gene regulation CRISPRIi

* Gene repression Inhibitor
e Temporary or persistent Cas9
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¢ Gene activation
e Temporary or persistent

¢ Epigenetic modification

Doudna Nature 2019
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Tool

Outcome at target site

a Prime editing

peg
gu

RNA
ide

Reverse

transcriptase

¢ Insertion, deletion, replacement
¢ Nicks
® Reverse transcriptase fused to

Cas9 nickase with 3’ extended
pegRNA guide

b CRISPR-Cas3

Cascade

T

e Large deletion (~0.5-100 kb)
¢ Multiple cuts
e Naturally occurring crBNA-guided

Cascade targeting complex and
nuclease-helicase Cas3

¢ CRISPR-associated transposases

Cas12k

Transposase
Cascade P

£7%

e Large insertion (~0.3-10 kb)

e Naturally occurring Cas12k or
Cascade and genomically
associated Tn7-like transposases

d EvolvR

Polymerase

Cas9 § )

¢ Continuous mutagenesis
¢ Nicks

¢ Error-prone, nick-translating DNA
polymerase fused to Cas9 nickase



The Age of CRISPR has redefined the meaning of the

term “druggable target.”



Inhibition of the kinase BRAF prolongs survival in melanom%

B-RAF V60OE Plexxikon

Melanoma driver

Other effectors: for example,
PI3K, RALGDS, PLCe

Nuclear translocation
and gene expression

Nature Reviews | Drug Discovery




The Age of CRISPR has redefined the meaning of the

term “druggable target.”

New definition: if it's in the genome,

it's a druggable target



Drugging the
undruggable for the
hemoglobinopathies
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Steinberg M. N EnglJ Med 1999;340:1021-1030
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TABLE 1. CLINICAL FEATURES OF SICKLE CELL DISEASE.

Tyre oF CoMPLICATION
Vaso-occlusive compli-
cations

Painful episodes

Stroke

Acute chest syndrome
Priapism

Liver disease

Splenic sequestration

Spontaneous abortion

Leg ulcers

Osteonecrosis

Proliferative reti-
nopathy
Renal insufficiency

Complications of hemolysis

Anemia

Cholelithiasis
Acute aplastic episodes

Infectious complications
Streptococcus pneumoni-
ae sepsis
Osteomyelitis
Escherichin coli sepsis

FEATURES

In more than 70 percent of patents; very fre-
quent in some, rare in others

In about 10 percent of patients in childhood;
“silent™ central nervous system damage with
cognitive impairment in 5 to 9 times as many
patients

In 40 percent of all patients; more common in
children; more severe in adults

In 10 to 40 percent of men; severe cases cause
erectile dysfunction

In <2 percent of patients; many causes (e.g.,
iron overload, hepatitis B or C)

In children <6 yr old; often preceded by in-
fection

In about 6 percent of pregnant women with
sickle cell anemia; much less frequent in
sickle cell-hemoglobin C disease

In about 20 percent of adults with sickle cell
anemia; rare in sickle cell-hemoglobin C
disease

In 10 to 50 percent of adults with sickle cell
anemia and sickle cell-hemoglobin C
disease

Rare in sickle cell anemia; in 50 percent of
adules with sickle cell-hemoglobin C disease

In 5 to 20 percent of adults; severe anemia
often present

Hemartocrit values of 15 to 30 percent in sickle
cell anemia; higher values in sickle cell-
hemoglobin C disease

Present in most adults; often asymptomatic

Due to parvovirus B19 infection; appears with
rapidly occurring, severe anemia

In 10 percent of children <5 yr old with sickle
cell anemia

Due to salmonella and Staphylococcus aureus

In adults, initiated by urinary tract infection

Pleiotropy



Clinical variability of SCD 5

“In a given year, about 60 percent of patients with sickle cell anemia will have an
episode of severe pain. A small minority of patients have severe pain almost
constantly. These differences are one manifestation of the heterogeneity of this
disease, which complicates the choice of treatment. Episodes of pain are sometimes
triggered by infection, extreme temperatures, or physical or emotional stress, but
more often they are unprovoked and begin with little warning.”

VARIABLE EXPRESSIVITY



Mutually reinforcing progress

Urnov CRISPR J 21

1960

Lentiviral gene therapy targeting BCL11A
for SCD/TDT is effective

Lentiviral gene therapy approved for TDT

15t subject dosed with lentiviral gene therapy
targeting BCL11A

15t subject cured of SCD with lentiviral gene therapy
15t prescribed gene therapy product approved

15t subject dosed with lentiviral gene therapy for SCD

15t subject cured of TDT with lentiviral gene therapy

15t gene therapy trial
Recombinant DNA
Gene therapy proposed
Bone marrow transplantation °
Molecular basis of SCD elucidated @

1980

2000

2020

Cell and gene therapy advances

Four INDs filed for editing in SCD/TDT

Gray continues to be clinically well post-treatment

Victoria Gray dosed with Cas9-edited cells

IND for enhancer editing in HSPCs for SCD
15t IND for enhancer editing in HSPCs for TDT

Target within enhancer to edit clinically is described

Trial for HSPCs genome editing

Enhancer nominated as editing target

Cas9 discovered to be RNA-guided and used for editing

15t subject dosed with edited cells
A native human gene edited

A DSB in mammalian cells shown to be editogenic

Molecular basis of SCD elucidated

Genome editing advances

FIG. 2. A timeline of technology developments in cell and gene therapy (left), and in clinic-directed genome editing
both broadly and for SCD/TDT specifically (right), that enabled the clinical trial data reported by Frangoul et al.



Genome editing for SCD/TDT in the clinic and on approach

Chr2 ,' BCL11A > ,' BCL11A >

Chr 11 —{HBG> HBG1 HBB = HB(%T HBG HBB —[HBG2

BCL11A erythroid enhancer: HBG promoter HBB exon 1

' HBB

GTGCAAGICTAACAGTTGCTTTTAT;CACAGGICTCCAGGA AGCCTTGCCTTGA;CCAATAGCCTTGACAAGGCAAACTT TGTGGZ—\GAAGTCTGCCGTTA?TGCCCTGTGGGGCAAGG
CACGTTCGATTGTCAACGAARATAGTGTCCGAGGTCCT TCGGAAClGGAIACT%GGTTATCGGAACTGTTClCGTTTGAA ACACCTCTTCAGACIGGCQAT';GACGGGACACCCCGTTCIC,

GATA1 binding site BCL11A binding region E6V (HbS)
DSB~NHE)J DSB-MME)J DSB—l'HDR
indels A13 HPFH allele WT
HbF elevation HbF elevation HbA production

® Innovative
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. Research Hospital
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Urnov CRISPR Journal 2021 PRI
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LentiGlobin for SCD gene therapy overview

HSC collection Busulfan myeloablative DP infusion

Mobilization with plerixafor conditioning
& apheresis

Transduced HSCs
engraft and contribute
to reconstitution of
functional RBCs

cells lentiviral vector release DP

Select CD34+ Transduce with BB305 Cryopreserve, test,

T87

polymerization

-/

Slide courtesy of Philip Gregory, bluebird bio

. .. Long-term
. —» 2-year ———» follow-up study
. . . follow-up (NCT02633943)
o BS BS BS BA-T87Q

%

destabilization

Modified RBCs express gene therapy-derived HbA™72

DP, drug product; Hb, hemoglobin; HSCs, hematopoietic stem cells; RBCs, red blood cells SCD, sickle cell disease.

27



Slide courtesy of Philip Gregory, bluebird bio

HGB-206 Group C: Complete resolution of VOEs 26 months post-

LentiGlobin treatment
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24 Months Prior to Informed Consent Post-LentiGlobin Follow-up (months)
Kl 5 (2.0-14.5) 0(0-4.3)

Protocol VOE are shown; Patients with > 4 sVOE at baseline before IC and with > 6 months of follow-up post-DP infusion are included. A VOE includes episodes of acute pain with no medically determined cause other than a vaso-occlusion,
lasting more than 2 hours and severe enough to require care at a medical facility, a VOE includes acute episodes of pain, acute chest syndrome, acute hepatic sequestration, and acute splenic sequestration; THbAT™7Qexpression stabilizes
within 6 months; *One death, unlikely related to LentiGlobin, > 18 months post treatment in a patient with significant baseline SCD-related cardiopulmonary disease.

Note: In the last datacut, one patient had a non-serious VOC at Day 107. The event is recorded as an investigator reported VOE but does not meet the definition of a protocol VOE Thompson, et al. ASH 2020

DP, drug product; IC, informed consent; max, maximum; min, minimum; sVOEs, severe VOEs; VOE, vaso-occlusive event; VOC, vaso-occlusive crisis. Data as of 20 August 2020 28



A teachable moment

1st Patients To Get CRISPR Gene-Editing
Treatment Continue To Thrive

December 15, 2020 - 5:02 AM ET
Heard on Morning Edition

v 1
’i'i' ROB STEIN

° 4-Minute Listen e ° e
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Urnov COGD 2018
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CLINICAL TRIAL SITE Stem cells \4 Myeloablative  CTX001 cells Engraftment
collected via conditioning  thawed and and immune
mobilization and with busulfan infused  reconstitution
apheresis
Long-term
follow-up
15 years
after
CTX001

Backup cells Cryopreserved Discharge

kept at site as cells received at & 2-year

a safety site and stored follow-up
measure until infusion

Cells shipped to a
central manufacturing
location

Cryopreserve, test, and
release CRISPR/Cas9-
modified stem cells
(CTX001)

Cells electroporated to
deliver CRISPR/Cas9

Isolate
CD34+
cells

CENTRAL MANUFACTURING LOCATION

Frangoul NEJM 2021



SCD: Clinically Meaningful HbF and Total Hb Are Cllil\:l%g CRISP
Achieved Early and Maintained

Hemoglobin fractionation, Hb (g/dL) B Hor i Hos [ poa [ HoA2
CTX001 infusion 132 13.5
1.1 12.5 117 167 113-159
11.2 10.0-15.4 9.7-14.9 11.3
8.9-13.7 10.7-11.8 10.7

Total Hb,
Mean (range),
g/dL

9.5 10.3-11.0

45.3%

8.0-12.5 27.1% 37.4% 44.2% i 41.9-48.0

|

|

|

|

|

I 21.1-33.7 |l 31.3-46.8 |l 356 . 495 [l 406 -°0-2 48.2%
I 8 46.0%
| 46.1-502 8 >, 455
|

|

|

|

|

|

|

HbF,
Mean (range),
%

6
Months after CTX001 infusion

Baseline

n= 7 7 7 7 7 6 5 2 2 1 1 1

Data as of March 15, 2021



Pancellular HbF Expression and Durable Editing P Y

Pancellular expression of HbF maintained
Mean % peripheral F-cells (range), % circulating RBCs expressing HbF

96.9 98.7 98.6 99.7 98.5 100 97.6 100
92.6 82.0- 100 94.7 - 100 96.5-100 99.1-100 96.9-100
CTX001 infusion 75.4-98.4 97.8 96.3 96.2 97.5 98.1 98.1 98.1
78.7 93.0 94.6-99.9 91.9-99.6 92.7-99.7 95.7-99.2
I 43.9-92.2 85.4-98.1
I 74.7
64.6-91.5
[ 50.8
I 8.8-75.8
49.0
| 34.0-61.0
14.6 I
53-46.6 I 9.7

19.8  26-275

7.9-339 | 11.7
I 4.3-33.5
|
Baseline 1 2 3 4 5 6 9 12
Months after CTX001 infusion
n(TDT): 15 15 15 14 13 11 10 5 5 2 1 1 1
n(SCD): 7 7 7 7 6 4 4 2 2 1 1 1 0
L 70.5 73.6

Durable BCL11A editing in the bone marrow? 41.8-91.4 53.3-88.2
Mean allelic editing in CD34* bone marrow cells (range), % 85.5 83.8

80.4-93.1 80.4-87.1

Data as of March 30, 2021 for TDT and March 15, 2021 for SCD
(1) Bone marrow editing assessments performed starting at 6 months, 12 months, and 24 months of follow-up




SCD: Duration VOC-Free After CTX001

Pre-study VOC burden
Average number per year
over the previous 2 years

1 7.0
2 7.5
3 4.0
4 2.5
5 5.5
6 9.5
7 4.0

Data as of March 15, 2021

22.4

13.6

9.6

7.5

6.3

CLIMB |

SCD=121

Total Hb at
last visit (g/dL)

12.0
11.0
13.7
15.9
15.2
11.7

12.5

0 2 4 6 8 10 12 14 16 18 20
Months after CTX001 infusion

Improvements in markers of hemolysis (serum lactate dehydrogenase and haptoglobin) observed;
haptoglobin detectable by Month 6 in all 4 patients with Month 6 values

22




UCSF-UCLA-IGI SCD:
technology innovation (2016) to IND (2020)

Berkeley NEWS  seccwen = peopte = campus communty

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

MIND & BODY, RESEARCH

SICKLE CELL DISEASE

Selection-free genome editing of the sickle mutation in
human adult hematopoietic stem/progenitor cells

Mark A. DeWitt,"> Wendy Magis,® Nicolas L. Bray,"? Tianjiao Wang,"? Jennifer R. Berman,* By Robert Sanders, Media refations | warcr 30,20m
Fabrizia Urbinati,” Seok-Jin Heo,? Therese Mitros,” Denise P. Murioz,? Dario Boffelli,®

’ 4 4 d 4 :m _ Share 12K S
Donald B. Kohn,® Mark C. Walters,>® Dana Carroll,""”* David I. K. Martin,>* Jacob E. Corn'*

FDA approves first test of CRISPR to correct
genetic defect causing sickle cell disease

b Email | | 8 Print

Genetic diseases of blood cells are prime candidates for treatment through ex vivo gene editing of CD34* hemato-
poietic stem/progenitor cells (HSPCs), and a variety of technologies have been proposed to treat these disorders. Sickle Berleley
cell disease (SCD) is a recessive genetic disorder caused by a single-nucleotide polymorphism in the B-globin gene s
(HBB). Sickle hemoglobin damages erythrocytes, causing vasoocclusion, severe pain, progressive organ damage,
and premature death. We optimize design and delivery parameters of a ribonucleoprotein (RNP) complex comprising
Cas9 protein and unmodified single guide RNA, together with a single-stranded DNA oligonucleotide donor (ssODN), to
enable efficient replacement of the SCD mutation in human HSPCs. Corrected HSPCs from SCD patients produced less
sickle hemoglobin RNA and protein and correspondingly increased wild-type hemoglobin when differentiated into
erythroblasts. When engrafted into immunocompromised mice, ex vivo treated human HSPCs maintain SCD gene
edits throughout 16 weeks at a level likely to have clinical benefit. These results demonstrate that an accessible ap-
proach combining Cas9 RNP with an ssODN can mediate efficient HSPC genome editing, enables investigator-led ex-
ploration of gene editing reagents in primary hematopoietic stem cells, and suggests a path toward the development of
new gene editing treatments for SCD and other hematopoietic diseases.

Watch on @3 YouTube

Sickle cell patients such as Cassandra Trimnell and Evie James Junior and UCSF physician Mark Walters talk
about the severe pain experienced by those with the disease and the potential benefits of a CRISPR cure.
(Video by UC Berkeley Public Affairs; video of Evie Junior by Colin Weatherby, courtesy UCLA’s Eli and
Edythe Broad Center of Regenerative Medicine and Stem Cell Research)



We * have developed a GMP-compliant manufacturing protocol 5
that uses non-viral gene editing to correct the SCD mutation

s9 RNP
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medicine

ApoE opsonization
of LNP in circulation
NTLA-2001

ApoE protein

Rapid distribution to liver
through hepatic artery

Lipid nanoparticle




Intellia Therapeutics — CRISPR KO for amyloidosis

The NEW ENGLAN D
JOURNAL o MEDICINE

ESTABLISHED IN 1812 AUGUST 5, 2021 VOL. 385 NO. 6

CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis

Julian D. Gillmore, M.D., Ph.D., Ed Gane, M.B., Ch.B., Jorg Taubel, M.D., Justin Kao, M.B., Ch.B.,
Marianna Fontana, M.D., Ph.D., Michael L. Maitland, M.D., Ph.D., Jessica Seitzer, B.S., Daniel O'Connell, Ph.D.,
Kathryn R. Walsh, Ph.D., Kristy Wood, Ph.D., Jonathan Phillips, Ph.D., Yuanxin Xu, M.D., Ph.D., Adam Amaral, B.A.,
Adam P. Boyd, Ph.D., Jeffrey E. Cehelsky, M.B.A., Mark D. McKee, M.D., Andrew Schiermeier, Ph.D.,

Olivier Harari, M.B., B.Chir., Ph.D., Andrew Murphy, Ph.D., Christos A. Kyratsous, Ph.D., Brian Zambrowicz, Ph.D.,
Randy Soltys, Ph.D., David E. Gutstein, M.D., John Leonard, M.D., Laura Sepp-Lorenzino, Ph.D.,
and David Lebwaohl, M.D.




Intellia Therapeutics — CRISPR KO for amyloidosis
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Intellia Therapeutics — CRISPR KO for amyloidosis

A Change in Serum TTR Concentration in Patients Who Received 0.1 mg/kg
0+
~104
g 20
- C Mean Reduction in Serum TTR Level at Day 28
g -40-
-47 Og--------ppmmmay------------—-- - - -
: -504 _52
E 60 -56 -10-
8
E -70+ —204
v -80- —_
50 & -30-
=
-100 T T T 1 —
0 7 14 21 28 ‘% 40
Day .§ -50-
B Change in Serum TTR Concentration in Patients Who Received 0.3 mg/kg % -60
m
O mmmmmmmm oo m oo oo s @ _7pd
-10- =
—~ 904 —-80+
é. -20
2 -30+ —00-
a -100
£ - 0.1 mg/kg 0.3 mg/kg
e -604
En _70- Dose
G -804 -80
_84
_90-
-96
-100 T | | 1
0 7 14 21 28
Day




Editas Medicine — CRISPR KO for congenital blindness

Use of adeno-associated virus (AAV) to deliver Cas9 to the eye to restore gene function.

LETTERS

namrai .
me Cme https://doi.org /10.1038/541591-018-0327-9

Development of a gene-editing approach to
restore vision loss in Leber congenital amaurosis
type 10

MorganL. Maeder ©'**, Michael Stefanidakis'*, Christopher J. Wilson ©®', Reshica Baral’,
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Maxwell N. Skor', Pam Stetkiewicz', Tongyao Wang', Clifford Yudkoff', VicE. Myer', CharlesF. Albright'
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in vivo CRISPR Gene Editing Therapy, in CEP290-Related Retinal
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The FDA'’s increasing levels of comfort for in vivo editing

EXCISION

Approach

Dual gRNAs excise large sections of viral
DNA, eliminating viral escape and
reproduction. The result is curative.

2 or More gRNAs

Excision

l ¥ ‘r:;“ L
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g 4”1  DNA Repair with
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Large Deletion,
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EXCIS:ON

Excision Receives FDA Clearance of IND for
Phase 1/2 Trial of EBT-101 CRISPR-Based
Therapeutic for Treatment of HIV

September 15, 2021 08:00 ET | Source: Excision BioTherapeutics

« EBT-10], first-in-human CRISPR-based one-time gene therapy to be evaluated in
individuals with HIV

« Initiation of EBT-101 Phase 1/2 clinical trial expected later this year

SAN FRANCISCO, Sept. 15, 2021 (GLOBE NEWSWIRE) -- Excision BioTherapeutics, Inc. the
developer of CRISPR-based therapies intended to cure viral infectious diseases, today
announced that the U.S. Food and Drug Administration (FDA) has accepted the Investigational
New Drug (IND) application for EBT-101, a CRISPR-based therapeutic candidate in development
as a potential functional cure for chronic HIV. The IND clearance enables Excision to initiate a
first-in-human Phase 1/2 clinical trial to evaluate the safety, tolerability, and efficacy of EBT-101in

individuals living with human immunodeficiency virus type 1 (HIV).



Sangamo Therapeutics and Intellia Therapeutics — in vivo editing 5
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In vivo genome editing restores haemostasis in a
mouse model of haemophilia
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Verve Therapeutics — CRISPR base editing for CAD
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Invivo CRISPR base editing of PCSK9 durably
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Navega: CRISPRI for pain '™

Long-lasting analgesia via targeted in situ repression
of Nay1.7 in mice
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“The delivery challenge: fulfilling the promise of therapeutic

genome editing”

FOCUS | REVIEW ARTICLE
https://doi.org/10.1038 /s41587-020-0565-5
m

The delivery challenge: fulfilling the promise of
therapeutic genome editing

nature
biotechnology

Joost van Haasteren @, Jie Li**”, Olivia J. Scheideler*”, Niren Murthy***= and
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CRISPR as a therapeutic — key takeaways 5

e Exvivo, CRISPR editing of primary cells has an established and fully charted regulatory path to first-in-human
clinical trials, with formidable early-stage promise demonstrated in the hemoglobinopathies space

* Multiple additional trials ongoing in the cancer space

* Expanded toolbox of CRISRP-based effectors (base editing, epiediting) is expanding range of disease
indications

* Invivo, targeted gene knockout in the liver using transient (nonviral) delivery has demonstrated formidable
early-stage promise with respect to biomarker knockdown

* Clinical precedent exists, and clinical development is ongoing, for an “in vivo protein replacement platform”
approach where the liver acts as a protein synthesis factory
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Nelson et al Nature Genetics 2015
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New screening system -> new disease area -> new target

Graphical Abstract
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How Emily was saved
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CRISRP-enhanced CAR-T therapy for cancer

Allogeneic therapy

L4
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Institute — CRISPR
Cures for All




Karly Koch, 20, Muncie, Ind.

“She has a rare genetic immune disorder, and has written about her end-of-life plans”

https://well.blogs.nytimes.com/2015/03/28/teen-advance-directive-end-of-life-care/



There is a giant gap between commercially viable
products (eg allo CAR-T, SCD/TDT, hemophilia), and

N=1 indications where the NPV is such that it makes



The fact that editing represents an approach to the

majority of monogenic disease in principle does not

mean that some biotech will take on disease #823 Iin
practice (and there are 5,000 monogenic conditions on

OMIM). We need a fundamentally new N=1 framework



IGIl: Cutting-Edge Science
with Social Purpose

Founded in 2014 by Nobel Laureate Jennifer Doudna, co-discoverer of CRISPR
genome editing, as a non-profit institute in partnership with UC Berkeley and
UCSF.

The IGI’s mission is to bridge revolutionary genome-editing tool development to
affordable and accessible solutions in human health, climate, and agriculture.

The IGl is working toward a world where genomic technology is routinely applied
to treat genetic disease, enable sustainable agriculture, and help achieve a carbon-
neutral economy.

IGI’s impact comes from the unique integration of:

* Advancing CRISPR genome engineering to optimize the technology for
real-world applications

* Solving targeted global problems of human health, agriculture, and
climate change

* Focusing on public impact and solutions that are ethical, accessible,
and affordable

“We have a responsibility to pursue
CRISPR’s enormous potential to achieve
previously impossible solutions to some
of the world’s big challenges —
solutions that will be available to
anyone.”

— Jennifer Doudna




Taking on the challenge of N=1 genetic disease
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https://innovativegenomics.org/crispr-made-simple/
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