

Hepatocellular Carcinoma: Treatment Options Outside of Transplant

Christopher J. Sonnenday, MD, MHS Surgical Director of Liver Transplantation Associate Chair for Clinical Affairs

No disclosures

Learning objectives

- Identify treatment options for HCC when transplant is not an option.
- Describe the various bridging techniques for individuals with HCC awaiting liver transplantation.
- Discuss the impact of bridging treatments on the recurrence of HCC and survival after liver transplantation.

HCC: Treatment Options Outside of Transplant

- Epidemiology of HCC
- Therapeutic decision-making in HCC
- History of liver transplantation for HCC
- Defining transplant criteria for transplant
 - Milan criteria
 - "Beyond Milan"
- Downstaging and bridging therapies for HCC
 - Ablation
 - Arterial-based therapies
 - Radiation therapy
- Outcomes of liver transplantation for HCC

Epidemiology of HCC

Hepatocellular Carcinoma

- Most common primary hepatic malignancy
- Typically (85%) arises in the setting of cirrhosis or chronic hepatitis

International HCC Epidemic

- 3rd most deadly cancer worldwide
- 8th leading cause of cancer death in the US
- Estimated peak incidence in the US will be in 2020?

	China	37.9						14.2			
Very high	Middle Africa		27.8				1	3.4			
incidence ^a	Japan		2	3.1			7.6				
	Eastern Africa			21.1			8.6				
	Southeastern Asia			18.2			5.7				
Moderately hig	h Melanesia Western Africa			16.8 15.3			8.2 5.6				
Incluence	Southern Europe				11.6		1.0				
	Micro/Polynesia				10.5		3.6				
1-1	Caribbean Southern Africa				8.2 7.0	2.	4.5 5				
	Western Europe				6.2	1.7					
Incluence	Eastern Europe				5.3	2.4	L				
	Northern America				5.3	1.9					
	Central America				4.9		4.9				
	Western Asia				4.6	2.0					
Low	Northern Africa				4.	2 2.2					
incidence	Australia/New Zealand				3.	9 1.3					
	South America				3	.7 2.	8			E Fei	nales
					3	3.4				Ma	les
	South central Asia					2.6					
	50	40	30	20	10	0	10	20	30	40	5
				Aae	-standardi	zed incide	nce per 10	0.000			

Increasing Incidence of Liver Cancer (HCC and CCA)

HCC Incidence and 5-yr Survival: 1970s to 2000s

Does etiology of liver disease affect HCC risk?

Table 3. Groups for whom HCC surveillance in recommended or in whom the risk of HCC is increased, but in whom efficacy of surveillance has not been demonstrated

Surveillance recommended		
Population group	Threshold incidence for efficacy of surveillance (> .25 LYG)(%/year)	Incidence of HCC
Asian male hepatitis B carriers over age 40	0.2	0.4-0.6%/year
Asian female hepatitis B carriers over age 50	0.2	0.3-0.6%/ year
Hepatitis B carrier with family history of HCC	0.2	Incidence higher than without family history
African/North American Blacks with hepatitis B	0.2	HCC occurs at a younger age
Cirrhotic hepatitis B carriers	0.2-1.5	3-8%/yr
Hepatitis C cirrhosis	1.5	3-5%/yr
Stage 4 primary biliary cirrhosis	1.5	3-5%/yr
Genetic hemachromatosis and cirrhosis	1.5	Unknown, but probably $> 1.5\%$ /year
Alpha 1-antitrypsin deficiency and cirrhosis	1.5	Unknown, but probably $> 1.5\%$ /year
Other cirrhosis	1.5	Unknown
Surveillance benefit uncertain		
Hepatitis B carriers younger than 40 (males) or 50 (females)	0.2	$< 0.2\%/{ m yr}$
Hepatitis C and stage 3 fibrosis	1.5	< 1.5%/yr
Non-cirrhotic NAFLD	1.5	< 1.5%/yr

Bruix and Sherman, Hepatology. 2010.

Table 2. Overall Hepatocellular Carcinoma Incidence Rates in Longitudinal Studies of Patients With Chronic Hepatitis C Infection According to Clinical Setting and Geographic Area

		No.		No.	Mean follow-up	HCC	95% Confidence
Clinical setting	Geographic area	studies	References ^{a,b}	patients	(<i>y</i>)	incidence ^c	interval
Chronic hepatitis ^d	Europe	1	30	329	4.2	0	_
	Japan	6	31–36	1451	6.2	1.8	1.50-2.05
	Taiwan	1	37 ^{e,f}	553	9.2	0.3	0.16-0.46
Compensated cirrhosis ^g	Europe and United States	13	5, 8, 30, 38–47	1284	4.5	3.7	3.20–4.17
	Japan	7	32, 34, 35, 48–51	626	5.8	7.1	6.19-7.96

 Table 4. Overall Hepatocellular Carcinoma Incidence Rates in Longitudinal Studies of Patients With Chronic Hepatitis B

 Infection According to Clinical Setting and Geographic Area

Clinical setting	Geographic area	No. studies	References ^{a,b}	No. patients	Mean follow-up (<i>y</i>)	HCC incidence ^c	95% Confidence interval
Asymptomatic carrier	North America	2 ^{<i>d</i>}	74, 75	1804	16	0.1	0.07-0.14
	Taiwan and China	4 ^e	37, 76–78	18,869	8	0.7	0.61-0.70
	Japan	1^{f}	79	513	7.3	0.2	0.08-0.39
Inactive carrier ^g	Europe	3	80–82	410	16	0.02	0-0.04
	Taiwan	1	83	189	8	0.2	0-0.42
Chronic hepatitis ^h	Europe	6	84–89	471	5.9	0.1	0-0.27
	Taiwan	2	90–91	461	4.0	1.0	0.36-1.56
	Japan	2	31, 92	737	5.1	0.8	0.46-1.06
Compensated cirrhosis ⁱ	Europe	6	8, 38, 40, 41, 85, 89	401	5.8	2.2	1.62-2.80
	Taiwan and Singapore	3	76, 93, 94	278	4.3	3.2	1.94-4.55
	Japan	2	48, 95	306	5.8	4.3	3.40-5.25

Fattovich et al., Gastroenterology. 2004.

HCV

HBV

NAFLD and HCC

- Lower overall HCC incidence of HCC in NAFLD vs. HCV
- <u>However</u>, NAFLD-associated HCC appears to have different phenotype
 - Older, higher proportion of females, more comorbid disease (metabolic syndrome)
 - Less severe liver dysfunction
 - Lower AFP production
 - Higher post-resection morbidity and mortality
 - Equivalent 5 year post-resection survival

Michellotti, Nature Gastroenterol Rev. 2013.

Therapeutic Decision-Making in HCC

Barcelona Clinic Liver Cancer (BCLC) Scoring System

HCC Survival by BCLC Stage

Lancet Oncol 2011;12:654-662

Figure 1: Kaplan-Meier survival curve of the study population according to BCLC stages

History of Liver Transplantation for HCC

MICHIGAN MEDICINE

SURGERY DECEMBER 1963 Gynecology & Obstetrics NUMBER 6

HOMOTRANSPLANTATION OF THE LIVER IN HUMANS

T. E. STARZL, M.D., F.A.C.S., T. L. MARCHIORO, M.D., K. N. VON KAULLA, M.D., G. HERMANN, M.D., R. S. BRITTAIN, M.D., and W. R. WADDELL, M.D., F.A.C.S., Denver, Colorado

AN IDEAL TREATMENT for several kinds of ease would be removal of the diseased nd orthotopic replacement with a homograft. Patients with primary na of the liver, congenital atresia of ducts, and terminal cirrhosis would. will be described. The first attempt resulted in failure at the operating table. The course of the second 2 patients establishes the feasibility of such an operation in humans, despite the fact that death occurred 22 and $7\frac{1}{2}$ days after transplantation from pulSurg Gynecol Obstet. 1963 December ; 117: 659–676.

"Patient 2 was a 48 year old Negro male with Laennec's cirrhosis and a **primary hepatoma**, proved by operation at another hospital 8 days previous to the transplantation procedure. The tumor and its multiple satellite nodules involved all 4 anatomic segments of the liver and had a localized attachment to the central tendon of the right hemidiaphragm. Except for the diaphragmatic invasion the neoplasm was confined to the liver."

"Patient 3 was a 67 year old white male with progressive jaundice.... Exploratory operation was performed on 3 June 1963, and an **intrahepatic duct cell carcinoma** was found which had obstructed both the right and left main hepatic ducts."

• Earliest experience

- Starzl, Calne, Pichlmyer, Bismuth, SGO 1969
- HCC with few CCA
- Longest survival 16 months
- 1970s-1980s
 - Israel Penn Transplant Cancer Registry, Surgery 1991
 - Almost universal recurrence
 - Overall survival in reported series 18-40%
- 1989 HCC named <u>contraindication</u> to liver transplantation by U.S. Department of Health and Human Services

LIVER TRANSPLANTATION FOR THE TREATMENT OF SMALL HEPATOCELLULAR CARCINOMAS IN PATIENTS WITH CIRRHOSIS

VINCENZO MAZZAFERRO, M.D., ENRICO REGALIA, M.D., ROBERTO DOCI, M.D., SALVATORE ANDREOLA, M.D., ANDREA PULVIRENTI, M.D., FEDERICO BOZZETTI, M.D., FABRIZIO MONTALTO, M.D., MARIO AMMATUNA, M.D., ALBERTO MORABITO, PH.D., AND LEANDRO GENNARI, M.D., PH.D.

•60 patients with unresectable HCC single tumor < 5 cm, or multiple tumors with largest <3 cm; 1 death while waiting, 11 untransplanted, <u>48 transplants</u>

•Median follow-up 26 months; 3 peri-operative deaths, 8 post-transplant deaths – only 2 due to recurrence of cancer

Mazzaferro V et al; New Engl J Med 1996;334:693-699

Liver Transplantation for Cancer, USA 1995-2006

Indications for liver transplantation, 2005-2025

Supply and demand in liver transplantation, 2000-2017

Acceptable outcomes for HCC in the MELD era

Mazzaferro et al, Liver Transpl 2011;17:S44-S57

- Meta-analysis of 25 adequate studies aimed at validating Milan criteria (vs. attempts to expand Milan)
- Milan criteria consistently predicts "acceptable" liver transplant outcomes – 5 year survival of 70%; recurrence rate < 10%
- Transplants outside of Milan criteria consistently associated with inferior survival
 - Higher grade tumors
 - Higher rates of VI

	Log			Hazard Ratio	Hazard Ratio
Study or Subgroup	Hazard Ratio	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Non-living donor					
Adler et al.54 (2008)	0.7419	0.326	4.7%	2.10 (1.11-3.98)	_
Decaens et al.48 (2006)	0.1222	0.17	7.9%	1.13 (0.81-1.58)	
Herrero et al.19 (2008)	0.174	0.35	4.3%	1.19 (0.60-2.36)	- -
Kneteman et al.15 (2004)	0.2311	0.51	2.6%	1.26 (0.46-3.42)	
Leung et al.39 (2004)	0.4055	0.31	5.0%	1.50 (0.82-2.75)	+
Mazzaferro et al.2 (1996)	1.16	0.37	4.1%	3.19 (1.54-6.59)	
Mazzaferro et al.26 (2009)	0.3507	0.09	9.6%	1.42 (1.19-1.69)	+
Merli et al.42 (2005)	1.141	0.29	5.3%	3.13 (1.77-5.53)	
Nart et al. ³³ (2003)	1.6752	0.72	1.5%	5.34 (1.30-21.90)	— — • •
Ravaioli et al.35 (2004)	0.27	0.19	7.4%	1.31 (0.90-1.90)	+
Sotiropoulos et al.16 (2007)	0.131	0.25	6.1%	1.14 (0.70-1.86)	
Xiao et al.57 (2009)	0.8544	0.26	5.9%	2.35 (1.41-3.91)	
Yao et al.84 (2002)	0.7514	0.48	2.9%	2.12 (0.83-5.43)	-
Zavaglia et al.40 (2005)	0.2624	0.4	3.7%	1.30 (0.59-2.85)	- _
Zheng et al.55 (2008)	0.8796	0.17	7.9%	2.41 (1.73-3.36)	
Zimmerman et al.53 (2007)	1.1787	0.35	4.3%	3.25 (1.64-6.45)	
Subtotal (95% CI)			83.2%	1.76 (1.45-2.15)	•
Heterogeneity: $\tau^2 = 0.08$; χ^2	= 34.89, df = 1	5 (P = 0	.003); /2 =	57%	
Test for overall effect: Z = 5	.64 (P < 0.001)				
Living donor					
Todo et al.63 (2004)	0.5128	0.23	6.5%	1.67 (1.06-2.62)	
Vakili et al.67 (2009)	0.9123	1.15	0.6%	2.49 (0.26-23.72)	
Yokoi et al.46 (2006)	0.0488	0.09	9.7%	1.05 (0.88-1.25)	<u>+</u>
Subtotal (95% CI)			16.8%	1.28 (0.86-1.89)	-
Heterogeneity: $\tau^2 = 0.06$; χ^2	= 4.01, df = 2 (P = 0.13	; /² = 50%		
Test for overall effect: Z = 1	.20 (P = 0.23)				
Total (95% CI)			100.0%	1.68 (1.39-2.03)	•
Heterogeneity: $\tau^2 = 0.09$; χ^2	= 51.81, df = 1	B (P < 0	.001); /2 =	65%	
Test for overall effect: Z = 5	.45 (P < 0.001)			0.1	0.2 0.5 1 2 5 10 avours OLIT Eavours IN
				Га	avours OUT Favours IN

Figure 2. Meta-analysis of the 19 studies comparing the overall survival of patients with HCC meeting the MC and patients with HCC exceeding the MC at the time of the explant pathology examination. The studies are stratified by the graft type (deceased or living donor).

Challenges in OLT for HCC: Understaging

Shah et al, Transplantation 2006;81:1633-1639.

Downstaging and Bridging Therapies for HCC

Bridging or Downstaging?

Management of HCC patients waiting for transplant

- "Bridging" therapies of controversial benefit, but appear to benefit patients within Milan criteria expected to wait <u>></u> 6 months
 - Majno et al, *Liver Transpl* 2011;17:S98-S108.
- No definitive studies on preferred modality of bridging therapy – TACE vs. RFA vs. Y⁹⁰ radioembolization vs. ...
- Progression beyond Milan on serial imaging (q 3 months) should be a contraindication to transplant

Downstaging HCC to Milan

- Extrahepatic disease and vascular invasion remain contraindications
- Should there be "maximum entry criteria"?
 - Single lesion 8 cm
 - 2 or 3 lesions each 5cm with the sum of the maximal tumor diameters of all lesions 8 cm
 - Only single center data
- Should downstaging technique be standardized?
- How do you measure response?
 - RECIST criteria
 - Only viable tumor(s) considered; tumor diameter measurements should not include the area of necrosis from tumor-directed therapy
 - If there is more than one area of residual tumor enhancement, then the diameter of the entire lesion should be counted toward the overall tumor burden

Liver Transpl 2010; 16:249-251

Hepatology 2016; 63:1014-1025

Ablative therapies for HCC

- Percutaneous ethanol ablation
- Radiofrequency ablation
- Microwave ablation

Radiofrequency ablation

- High frequency alternating current from probe placed into tumor.
- Ionic agitation leads to heating and necrosis.
- May have limited efficacy near large blood vessels ("heat sink").
- Slow...

RFA and PEI for HCC

TABLE 4. Characteristics of Randomized Controlled Trials Comparing Radiofrequency Ablation to Percutaneous Ethanol Injection for the Treatment of Hepatocellular Carcinoma

		Samp	le Size		CTP C	ass A/B	Comp Necrosis	lete Rate (%)	
First Author	Year	RFA	PEI	Tumors	RFA	PEI	RFA	PEI	3-year OS Rate
Lencioni ¹⁵⁵	2003	52	50	Milan criteria	45/7	35/15	91	82	RFA: 98% PEI: 88%
Lin ¹⁵⁶	2004	52	52	$1-3$ lesions ≤ 4 cm	41/11	39/12	96	88	RFA: 74% PEI: 48%
Lin ¹⁵⁷	2005	62	62	$1-3$ lesions ≤ 3 cm	46/16	47/15	96	88	RFA: 74% PEI: 51%
Shiina ¹⁵⁸	2005	118	114	Milan criteria	85/33	85/29	100	100	RFA: 81% PEI: 67%
Brunello ¹⁵⁹	2008	70	69	$1-3$ lesions ≤ 3 cm	56/44	56/44	95	65	RFA: 63% PEI: 59%

Rahbari Ann Surg. 2011

Microwave ablation

- Higher frequency
 radiofrequency energy
- Creates electromagnetic field with greater heating
- Energy does not respect boundaries (vessels), so no "heat sink"
- Able to address larger lesions (up to 4 cm)
- Faster application

RFA vs MWA?

- Limited data for comparison
- Lancet Gastro & Hepatol 2018;3(5):317-325.
 - Phase 2 randomized clinical trial; N=152
 - Primary outcome 2 year recurrence, tumors
 - RFA 12% vs MWA6%, RR 1.62, P=0.27
 - Slightly better outcomes at 3-4 cm with MWA
- Advantages of speed and slightly more versatility with larger tumors favors MWA

Hepatic artery based therapies for HCC

Transarterial chemoembolization (TACE)

- Most well-established therapy for multifocal and/or locally advanced HCC
- Demonstrated survival benefit (~11 months) in locally advanced HCC (non-transplant).
- Multiple studies reporting use prior to liver transplantation:
 - Average of 2 sessions required
 - Rare decompensation in Childs A and B patients
 - No change in post-transplant survival
 - Downstaging effective in ~60% of patients

TACE in selection of HCC patients for transplant

Figure 2. Survival of 96 patients enrolled in the TACE protocol. The difference in 5-year survival between downstaged (transplanted) patients and patients not responding to TACE is highly significant (P < 0.0001). (Survival is calculated from the beginning of TACE treatment.) Solid line denotes all patients included in the analysis. Dotted line denotes patients not responding to TACE. Dashed line denotes transplanted patients. Cross denotes censored.

Figure 4. Posttransplant freedom from recurrence. TACE without progression (denoted by solid line) during waiting time vs. TACE with progression (denoted by dashed line) during waiting time. Cross denotes censored.

Otto et al, Liver Transpl 2006;12:1260-1267

Transarterial radioembolization (TARE)

- Transarterial injection of Y⁹⁰ coated microspheres
- Demonstrated survival benefit in Childs A/B patients with HCC (nontransplant).
- Demonstrated survival benefit in Childs A patients with PVT
- Rare severe toxicities

Salem et al, *Gastro* 2010;138:52-64.

TARE prior to liver transplantation

- Well-tolerated with minimal toxicity/dropout
- Appears to be more effective in treatment of more advanced HCC (larger tumors > 5 cm, multifocal tumors)
- Response to TARE predicts low recurrence risk posttransplant

Lewandowski et al, *American Journal of Transplantation* 2009; 9: 1920–1928

		TACE	Y90	
Characteristic N (%)		N = 43	N = 43	p-Value
Mean number of treatm	ents (range)	2.0 (1-5)	1.8 (1-6)	-
Median number of treatr	ments (95% CI)	2 (1–2)	1 (1–2)	0.21
Treatment type	Lobar	19 (44)	23 (53)	0.52
	Selective	24 (56)	20 (46)	
Median activity delivered (range) (GBq)	d to treatment site	-	1.61 (0.54–2.97)	-
Median dose administered to treatment site (range) (Gy)		-	110.2 (53–284)	-
Mean number of days he	ospitalized (range)	3 (1–11)	0 (-, -)	-
Median number of days hospitalized (95% CI)		2 (1–2)	0 (-, -)	<0.001

		TACE	Y90	
Characteristic		N = 35	N = 43	p-Value
WHO	CR	0 (0)	0 (0)	0.12
	PR	13 (37)	26 (61)	
	SD	17 (49)	16 (37)	
	PD	5 (14)	1 (2)	
Median time to WHO PR (95% CI) (months)		10.9 (7.3, -)	4.2 (3.3-6.9)	0.025
EASL	CR	6(17)	20 (47)	0.13
	PR	19 (54)	17 (39)	
	SD	9 (26)	6 (14)	
	PD	1 (3)	0 (0)	
Median time to EASL PR (95% CI) (months)		1.9 (1.4-3.3)	1.3 (1.1-2.4)	0.04
Median time to EASL CR (95% CI) (months)		- (-, -)	6.1 (4.2, -)	0.017
UNOS downstaged T3→T2		11 (31)	25 (58)	0.023
Median time to UNOS downstaging (95% CI) (months)		- (4.3, -)	3.1 (1.8-8.7)	0.027

CR = complete response; PR = partial response; SD = stable disease; PD = progressive disease.

Stereotactic Body Radiotherapy (SBRT)

- High dose focused radiation given over 3-5 sessions
- May be dose adjusted to minimize liver-specific toxicity
- Effective alternative for local control for tumors that cannot be ablated (location etc.)
- Limited reports of successful bridging to liver transplantation

Neoadjuvant chemotherapy for HCC

Sorafenib – tyrosine kinase inhibitor

SHARP trial showed improved survival for patients with advanced HCC; Bruix et al, *New Eng J Med* 2008;358:378-390

No evidence of improved survival in patients who receive sorafenib after liver transplantation for HCC.

No definitive studies of using sorafenib PRIOR to transplant for downstaging or bridging therapy.

Outcomes of liver transplantation for HCC

Acceptable outcomes for HCC in the MELD era

Mazzaferro et al, Liver Transpl 2011;17:S44-S57

- Meta-analysis of 25 adequate studies aimed at validating Milan criteria (vs. attempts to expand Milan)
- Milan criteria consistently predicts "acceptable" liver transplant outcomes – 5 year survival of 70%; recurrence rate < 10%
- Transplants outside of Milan criteria consistently associated with inferior survival
 - Higher grade tumors
 - Higher rates of VI

	Log			Hazard Ratio	Hazard Ratio
Study or Subgroup	Hazard Ratio	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Non-living donor					
Adler et al.54 (2008)	0.7419	0.326	4.7%	2.10 (1.11-3.98)	_
Decaens et al.48 (2006)	0.1222	0.17	7.9%	1.13 (0.81-1.58)	
Herrero et al.19 (2008)	0.174	0.35	4.3%	1.19 (0.60-2.36)	- -
Kneteman et al.15 (2004)	0.2311	0.51	2.6%	1.26 (0.46-3.42)	
Leung et al.39 (2004)	0.4055	0.31	5.0%	1.50 (0.82-2.75)	+
Mazzaferro et al.2 (1996)	1.16	0.37	4.1%	3.19 (1.54-6.59)	
Mazzaferro et al.26 (2009)	0.3507	0.09	9.6%	1.42 (1.19-1.69)	+
Merli et al.42 (2005)	1.141	0.29	5.3%	3.13 (1.77-5.53)	
Nart et al.33 (2003)	1.6752	0.72	1.5%	5.34 (1.30-21.90)	
Ravaioli et al.35 (2004)	0.27	0.19	7.4%	1.31 (0.90-1.90)	+
Sotiropoulos et al.16 (2007)	0.131	0.25	6.1%	1.14 (0.70-1.86)	- -
Xiao et al.57 (2009)	0.8544	0.26	5.9%	2.35 (1.41-3.91)	
Yao et al.84 (2002)	0.7514	0.48	2.9%	2.12 (0.83-5.43)	
Zavaglia et al.40 (2005)	0.2624	0.4	3.7%	1.30 (0.59-2.85)	- -
Zheng et al.55 (2008)	0.8796	0.17	7.9%	2.41 (1.73-3.36)	
Zimmerman et al.53 (2007)	1.1787	0.35	4.3%	3.25 (1.64-6.45)	
Subtotal (95% CI)			83.2%	1.76 (1.45-2.15)	•
Heterogeneity: $\tau^2 = 0.08$; χ^2	² = 34.89, df = 1	5 (P = 0	.003); /2 = 3	57%	
Test for overall effect: Z = 5	.64 (P < 0.001)				
Living donor					
Todo et al.63 (2004)	0.5128	0.23	6.5%	1.67 (1.06-2.62)	
Vakili et al.67 (2009)	0.9123	1.15	0.6%	2.49 (0.26-23.72)	
Yokoi et al.46 (2006)	0.0488	0.09	9.7%	1.05 (0.88-1.25)	
Subtotal (95% CI)			16.8%	1.28 (0.86-1.89)	-
Heterogeneity: $\tau^2 = 0.06$; χ^2	² = 4.01, df = 2 (P = 0.13	s); /² = 50%	þ	
Test for overall effect: Z = 1	.20 (P = 0.23)				
Total (95% CI)			100.0%	1.68 (1.39-2.03)	•
Heterogeneity: $\tau^2 = 0.09$; χ^4	² = 51.81, df = 1	B (P < 0	.001); /2 = 0	65% H	
Test for overall effect: Z = 5	.45 (P < 0.001)		- 1	0	.10.2 0.5 1 2 5 10 Favours OUT Favours IN
Test for subaroup difference	es: $\chi^2 = 12.90.$	f = 1 (P	< 0.001).	/2 = 92.3%	

Figure 2. Meta-analysis of the 19 studies comparing the overall survival of patients with HCC meeting the MC and patients with HCC exceeding the MC at the time of the explant pathology examination. The studies are stratified by the graft type [deceased or living donor].

Liver Transplantation for Hepatocellular Carcinoma: Expansion of the Tumor Size Limits Does Not Adversely Impact Survival

FRANCIS Y. YAO,^{1,5} LINDA FERRELL,^{2,5} NATHAN M. BASS,^{1,5} JESSICA J. WATSON,³ PETER BACCHETTI,^{3,5} ALAN VENOOK,^{1,5} NANCY L. ASCHER,^{4,5} AND JOHN P. ROBERTS^{4,5}

UCSF Criteria

- Solitary tumor < 6.5 cm
- OR
- ≤ 3 tumors
- Largest < 5 cm
- Total tumor diameter < 8 cm
- No vascular invasion
- AFP < 500 if initially > 500

Hepatology 2001;33:1394-1403

Transplant outcomes by selection criteria

Table 1 Liver transplantation criteria for patients with hepatocellular carcinoma									
Transplantation criteria	Intention-to-treat survival	Disease-free survival	Post-transplantation survival	Comments					
Milan criteria ⁵¹ • Single tumour ≤5 cm or 3 tumours all ≤3 cm	N/A	92% 4 years	85% 4 years	Based only on size and number					
UCSF criteria ³⁹ • Single tumour ≤6.5 cm or 3 tumours all ≤4.5 cm with TTD ≤8 cm	N/A	90.9% 5 years	80.9% 5 years	Based only on size and number					
Up-to-7 criteria ⁴⁹ • The sum of the maximum tumour diameter and number <7	N/A	 Beyond Milan but within Up-to-7 64.1% 5 years 	 Beyond Milan but within Up-to-7 71.2% 5 years 	Based only on size and number					
Total Tumour Volume (TTV) ⁴⁷ • Total tumour volume ≤115 cm ³ • AFP ≤400 ng/mL	 Beyond Milan but within TTV/AFP 53.8% 4 years 	 Beyond Milan but within TTV/ AFP 68% 4 years 	 Beyond Milan but within TTV/AFP 74.6% 4 years 	Size and number and biological marker (AFP)					
Extended Toronto Criteria (ETC) ⁴³ • No limit in size and number • No vascular invasion • No extrahepatic disease • No cancer-related symptoms • Biopsy of largest tumour not poorly differentiated	 Beyond Milan but within ETC 55% 5 years 	 Beyond Milan but within ETC 30% 5 years (Cumulative risk of recurrence) 	 Beyond Milan but within ETC 68% 5 years 	No size and number limit but biological behaviour (cancer-related symptoms and tumour differentiation)					
Kyoto Criteria ⁵⁵ • Number ≤10 tumours • Size ≤5 cm • DCP ≤400 mAU/mL	N/A	 Beyond Milan but within Kyot 30% 5 years (Cumulative risk of recurrence) 	 Beyond Milan but within Kyoto 65% 5 years 	Size and number and biological marker					

AFP, a-fetoprotein; DCP, des-y-carboxyprothrombin; TTD, total tumour diameter; UCSF, University of California San Francisco.

Sapisochin et al., Nature Reviews Gastro Hepat 2017;14:205-217

Challenges in OLT for HCC: Understaging

FIGURE 2. Recurrence-free survival comparing patients who were within Milan criteria and appropriately staged (n=67) or understaged (n=51) after LT for HCC.

LT for HCC: Impact of Underlying Liver Disease

Figure 2. Kaplan–Meier curves of survival after liver transplantation in 2002–2007, presented according to presence of HCC* and MELD level. *Limited to patients with tumors ≥2 cm who obtained an "HCC-MELD-exception" from the MELD-based allocation system.

Ioannou et al, Gastroenterology2008;134:1342-1351.

Living Donor LT for HCC

- Outcomes of LDLT for non-HCC diagnoses are equivalent to slightly better than DDLT
- LDLT for HCC associated with slightly higher recurrence rate in published studies:
 - differences in pre-transplant therapies (such as decreased use of liver-directed therapy)
 - differences in patient selection (potential tendency to consider patients beyond Milan criteria for LDLT)
 - expedited transplant via LDLT such that a period of observation of tumor behavior does not occur
- Utilization of 3-6 month observation period prior to LDLT may decrease risk of early recurrence

Olthoff KM et al. *Liver Transpl* 2011;17(7):789-797. Fisher RA et al. *Am J Transplant* 2007;7(6):1601-1608. Kulik LM et al. *Am J Transplant*. 2012;12(11):2997-3007.

HCC: Treatment Options Outside of Transplant

- Transplantation of patients with HCC beyond Milan or UCSF criteria may be associated with increased recurrence and decreased survival.
- Bridging therapies appear to be effective in controlling HCC in patients with waiting time <u>></u> 6 months.
- Bridging and downstaging therapies should be catered to patient and tumor factors
 - MWA, TACE/TARE, SBRT
- Outcomes post-transplant should target recurrence rate of < 10% and 5 year survival 75%

Thank you

Chris Sonnenday Email: <u>csonnend@umich.edu</u> Twitter: @HPB_Txp_Surg

