

Type 2 Diabetes: What's New?

Gregg Simonson, PhD

Director, Care Transformation and Training International Diabetes Center; Adjunct Assistant Professor, University of Minnesota Medical School, Department of Family Practice and Community Health

International Diabetes Center...

Ensuring that every individual with diabetes or at risk for diabetes receives the best possible care

Trends in Diabetes Treatment and Control in U.S. Adults, 1999–2018

Michael Fang, Ph.D., Dan Wang, M.S., Josef Coresh, M.D., Ph.D., and Elizabeth Selvin, Ph.D., M.P.H.

What's New in Type 2 DM Presentation Outline

- Disease modifying classes of type 2 diabetes medications
 - SGLT2 inhibitors
 - GLP-1 receptor agonists
 - American Diabetes Association (ADA) recommendations for SGLT2-i and GLP-1 receptor agonists
- New technology in type 2 diabetes
 - Continuous glucose monitoring (CGM)
 - Insulin smart pens
 - Patch pumps

Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors

- Inhibits renal re-absorption through inhibition of SGLT2
 - Selective inhibitor of SGLT2 -- acts in early proximal tubule to block reabsorption of filtered glucose
 - Normally ~180 g glucose filtered/day
- Causes about 70 g (~300 kcal) glucose excretion per day; potential for weight loss

List et al. *Diabetes Care*, 2009; 32:650-657; Neumiller et al. *Drugs*, 2010; 70:377-385 Nair S. et al. J Clin Endocrinol Metab 2010;95:34-42 Copyright ©2010 The Endocrine Society.

Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors

Canagliflozin (Invokana), Dapagliflozin (Farxiga), Empagliflozin (Jardiance) and Ertugliflozin (Steglatro)

Clinical Indicators

- Modest reduction in both FPG and PPG
- Approved as monotherapy, and in combination with metformin, SU, pioglitazone and/or insulin
- Modest weight loss, no additional hypoglycemia

Precautions and contraindications

- Use caution with renal impairment (eGFR <30); contraindicated in dialysis
- Symptomatic hypotension especially in elderly, renal impairment, patients treated with loop diuretics, ACE-I, and/or ARBs
- Genital mycotic infections, especially in women or if history of mycotic infections;
 urinary tract infections; rare cases of necrotizing fasciitis of the perineum
- Acute kidney injury, especially with dehydration, history of CKD
- Euglycemic Diabetic Ketoacidosis (DKA)--- rare

EMPA- REG Outcome: Death From Cardiovascular Causes

In addition a 35% risk reduction in hospitalization for heart failure

Number Needed to Treat (NNT) to Prevent one Death Across Landmark Trials in Patients with High CV Risk

Overview of SGLT2 CVOTs Results

EMPA-REG OUTCOME¹

Empagliflozin

CANVAS Program²

Canagliflozin

DECLARE-TIMI 583

Dapagliflozin

VERTIS CV

Ertugliflozin

MACE

HR (95% CI)

0.86

(0.74, 0.99)

0.86

(0.75, 0.97)

0.93

(0.84, 1.03)

0.97

(0.85, 1.11)

CV Death

HR (95% CI)

0.62

(0.49, 0.77)

0.87

(0.72, 1.06)

0.98

(0.82, 1.17)

0.92

(0.77, 1.11)

HHF

HR (95% CI)

0.65

(0.50, 0.85)

0.67

(0.52, 0.87)

0.73

(0.61, 0.88)

0.70

(0.54, 0.90)

1. Zinman B et al. N Engl J Med 2015;373:2117-2128. 2. Neal B et al. N Engl J Med 2017;377:644-657. 3. Wiviott SD et al. N Engl J Med 2019;380:347-357

DAPA-HF Trial: SGLT2 Inhibitors in Patients with Established HF

Patients with or without diabetes (60%) and EF ≤40% (HFrEF)

Empagliflozin in Heart Failure with a Preserved Ejection Fraction

Stefan D. Anker, M.D., Ph.D., Javed Butler, M.D., Gerasimos Filippatos, M.D., Ph.D., João P. Ferreira, M.D., Edimar Bocchi, M.D., Michael Böhm, M.D., Ph.D., Hans-Peter Brunner–La Rocca, M.D., Dong-Ju Choi, M.D., Vijay Chopra, M.D., Eduardo Chuquiure-Valenzuela, M.D., Nadia Giannetti, M.D., Juan Esteban Gomez-Mesa, M.D., et al., for the EMPEROR-Preserved Trial Investigators*

August 27, 2021

Composite of CV Death and HHF

DOI: 10.1056/NEJMoa2107038

- n =5988 patients with class II–IV heart failure and an ejection fraction of more than 40%
- Empagliflozin (10 mg once daily) or placebo, in addition to usual therapy
- Primary outcome was a composite of cardiovascular death or hospitalization for heart failure
- Equally effective in patients with or without diabetes

No. at Risk Placebo Empagliflozin

Potential Effects by Which SGLT2 Inhibition Improves Heart Failure

LV=left ventricular; NHE1=sodium-hydrogen exchanger 1.

1. Heerspink HJL, et al. *Kidney Int*. 2018;94(1):26-39. 2. Tamargo J. *Eur Cardiol*. 2019;14(1):23-32. 3. Verma S, et al. *Diabetes Care*. 2016;39(12):e212-e213. 4. Verma S. Presented at: American Heart Association Scientific Sessions; Nov. 10-12, 2018; Chicago.

Overview of SGLT2 Renal Outcomes

Renal-related Composite Outcomes

EMPA-REG OUTCOME¹

Empagliflozin

CANVAS Program²

Canagliflozin

DECLARE-TIMI 58³

Dapagliflozin

VERTIS CV

Ertugliflozin

Doubling of the serum creatinine level, initiation of renal-replacement therapy, or death from renal disease

Sustained 40% reduction in eGFR, renalreplacement therapy (dialysis or transplantation), or death from renal causes

Sustained ≥40% decrease in eGFR to <60 mL/min/1.73 m² and/or end-stage renal disease and/or renal or CV death

Renal death, dialysis/transplant, or doubling of serum creatinine from baseline

HR (95% CI)

0.54 (0.40, 0.75)

0.60 (0.47, 0.77)

0.53 (0.43, 0.66)

0.81 (0.64, 1.03)

^{1.} Wanner C et al. N Engl J Med 2016;374:323-334. 2. Neal B et al. N Engl J Med 2017;377:644-657. 3. Wiviott SD et al. N Engl J Med 2019;380:347-357.

CREDENCE: Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation

- Comparing efficacy and safety of canagliflozin (Invokana) vs. placebo for adults with T2 DM and CKD
- Patient population
 - A1C 6.5%-12%
 - eGFR 30 to <90 ml/min
 - Albumin creatinine ratio >300 to ≤5000 mg/g
 - Patients to be treated with ACE inhibitor or ARB
- Study halted early based on meeting prespecified criteria showing benefit

ESKD, doubling SrCr, or death from renal or CV causes

A Primary Composite Outcome

Jardine et al. Am J Nephrol 2018 46:462-472, Perkovic et al. N Engl J Med online; April 2019

How do SGLT2 Inhibitors Protect the Kidneys

nter

SGLT2 Inhibitor Scorecard

Potential Advantages	Potential Disadvantages
Good BG lowering efficacy	Mycotic infections, necrotizing fasciitis of perineum
No G.I. side effects	Dehydration, hypotension
Modest weight loss (2-3%) in a pill	Limited use with low GFR (<30 ml/min)
Low risk of hypoglycemia	Risk of acute kidney injury???
Lowers BP (~4 mmHg systolic)	DKA (rare but real)
Cardioprotective, especially reduces risk of HHF	Possible increased amputation risk with canagliflozin and ertugliflozin???
Renal protection	Higher cost (~\$590/month)

Chao Clin. Diab. 2014; 32:4-11; Rosenstock et al Diab Care. 2014 37:1815-1823.

Glucagon-Like Peptide-1 (GLP-1) Action

Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists

Dulaglutide (Trulicity), Exenatide (Byetta), ExenatideQW (Bydureon), Liraglutide (Victoza), and Semaglutide (Ozempic)

Action

- Enhances glucose-dependent insulin secretion and glucagon suppression
- Slows gastric emptying
- Induce satiety and reduce food intake

Clinical Indicators

- Elevated postmeal BG (exenatide), elevated postmeal and fasting BG (all others)
- In combination with metformin, sulfonylurea, thiazolidinedione or insulin

Side effects

- Transient nausea (up to 40% patients) vomiting (~10%) and diarrhea (~10%)
- Low risk of hypoglycemia unless used in combination with SU or insulin
- Modest weight loss in >85% of patients

Precautions and Contraindications

- Kidney Disease (no exenatide if eGFR <30 ml/min) others use with caution
- Gastrointestinal disease, pancreatitis (rare)
- Pregnancy (Category C)

Examples of Injectable GLP-1 Agonists

Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials

Søren L Kristensen, Rasmus Rørth, Pardeep S Jhund, Kieran F Docherty, Naveed Sattar, David Preiss, Lars Køber, Mark C Petrie, John J V McMurray

	GLP-1 receptor agonist n/N (%)	Placebo n/N (%)		Hazard ratio (95% CI)	NNT (95% CI)	p value
Three-component MACE						-
ELIXA	400/3034 (13%)	392/3034 (13%)		1.02 (0.89-1.17)		0.78
LEADER	608/4668 (13%)	694/4672 (15%)		0.87 (0.78-0.97)		0.015
SUSTAIN-6	108/1648 (7%)	146/1649 (9%)		0.74 (0.58-0.95)		0.016
EXSCEL	839/7356 (11%)	905/7396 (12%)	-	0.91 (0.83-1.00)		0.061
Harmony Outcomes	338/4731 (7%)	428/4732 (9%)		0.78 (0.68-0.90)		<0.001
REWIND	594/4949 (12%)	663/4952 (13%)		0.88 (0.79-0.99)		0.026
PIONEER 6	61/1591 (4%)	76/1592 (5%)	*	0.79 (0.57–1.11)		0.17
Overall	2948/27977 (11%)	3304/28027 (12%)	♦	0.88 (0.82-0.94)	75 (50-151)	<0.001
			0.5 1 1.5	_		

Favours GLP-1 Favours receptor agonist placebo

REWIND Trial

- 371 sites, 24 counties
- 1.5 mg dulaglutide vs. placebo
- 31.5% with CVD and 68.5% with risk factors for CVD
- Mean follow-up 5.4 years
- Mean A1C 7.3%; 0.6% difference between groups
- Similar CV benefit in both primary and secondary prevention groups

Potential CV Benefits of GLP-1 Agonists

Gerstein et al. Lancet Online June 10, 2019

GLP-1 Agonist Scorecard

Potential Advantages	Potential Disadvantages
Good BG lowering efficacy	G.I. side effects
Significant weight loss (5-8%)	Injection for most
Low risk of hypoglycemia	Pancreatitis? (rare)
Modest improvement in BP, lipids	Thyroid C-cell tumors?
Works well in combination therapy; BID, daily and weekly formulations	Highest cost (\$900-\$1,100/month)
CV protection with liraglutide, semaglutide (injection), dulaglutide	

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF

CONSIDER INDEPENDENTLY OF BASELINE A1C, INDIVIDUALIZED A1C TARGET, OR METFORMIN USE*

+ASCVD/Indicators of High Risk

- Established ASCVD
- Indicators of high ASCVD risk (age ≥55 years with coronary, carotid, or lower-extremity artery stenosis >50%, or LVH)

EITHER/

GLP-1 RA with proven CVD benefit¹ SGLT2i with proven CVD benefit¹

If A1C above target

If further intensification is required or patient is unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV benefit and/or safety:

 For patients on a GLP-1 RA, consider

+HF

Particularly HFrEF (LVEF <45%)

SGLT2i with proven benefit in this population^{5,6,7}

+CKD

DKD and Albuminuria⁸ NO

PREFERABLY

SGLT2i with primary evidence of reducing CKD progression

OR

SGLT2i with evidence of reducing CKD progression in CVOTs^{5,6,8}

OR

GLP-1 RA with proven CVD benefit¹ if SGLT2i not tolerated or contraindicated

What's New in Type 2 DM Presentation Outline

- Disease modifying classes of type 2 diabetes medications
 - SGLT2 inhibitors
 - GLP-1 receptor agonists
 - American Diabetes Association (ADA) recommendations for SGLT2-i and GLP-1 receptor agonists
- New technology in type 2 diabetes
 - Continuous glucose monitoring (CGM)
 - Insulin smart pens
 - Patch pumps

CGM Devices/Systems

Dexcom G6 and G6 Pro

Eversense
CGM
(Eversense
XL- Europe)
Senseonics

1122

Medtronic Guardian Connect CGM (iPro2)

Continuous Glucose Monitoring (CGM)

- Tiny filament sensor inserted under skin measuring interstitial glucose every 1-5 minutes and sent to receiver/phone to store data
- Lag time of 5-6 minutes between intravascular and interstitial compartments
- Three categories
 - Real-time CGM: used continuously with alarms and alerts
 - Intermittently-scanned CGM: glucose measured continuously but displayed when patient swipes over the sensor with a reader or smart phone using CGM app
 - Professional CGM: clinic owned and used for one blinded or un-blinded session

What Patients with Type 2 Diabetes Should be Considered For CGM?

Real-time CGM

- Lowers A1C and reduces hypoglycemia risk for all ages
- Multiple daily insulin (MDI) and insulin pump (Grade A)
- Other insulin therapies (Grade C)

Intermittently-scanned CGM

- Useful to lower A1C and reduce hypoglycemia risk for all ages
- Multiple daily insulin (MDI) and insulin pump (Grade B)
- Other insulin therapies (Grade C)

Professional CGM

- Useful to identify and correct hyper- and hypoglycemia
- Consider for noninsulin and basal insulin regimens (Grade C)

JAMA

QUESTION For adults with poorly controlled type 2 diabetes treated with basal insulin without prandial insulin in primary care practices, does continuous glucose monitoring (CGM) improve hemoglobin A_{1c} (Hb A_{1c}) levels compared with blood glucose meter (BGM) monitoring?

CONCLUSION This randomized clinical trial found there was a significantly greater decrease in HbA_{1c} level over 8 months with CGM than with BGM monitoring.

POPULATION

88 Women 87 Men

Adults with type 2 diabetes treated with basal insulin without prandial insulin

Mean age: 57 years

LOCATIONS

Primary care practices in the US

FINDINGS

Mean HbA_{1c} level at 8 months

Continuous glucose monitoring

HbA_{1c}
Baseline 8 Months
9.1% ▶ 8.0%

Blood glucose meter monitoring

HbA_{1c}
Baseline 8 Months

9.0% ▶ 8.4%

Risk-adjusted difference was significant,

-0.4% (95% CI, -0.8% to -0.1%)

© AMA

Health Partners

Martens T, Beck RW, Bailey R, et al; MOBILE Study Group. Effect of continuous glucose monitoring on glycemic control in patients with type 2 diabetes treated with basal insulin: a randomized clinical trial. JAMA. Published online June 2, 2021. doi:10.1001/jama.2021.7444

Thomas Martens, MD; Roy W. Beck, MD, PhD; Ryan Bailey, MS; et al for the MOBILE Study Group

Effect of Continuous Glucose Monitoring on Glycemic Control in Patients With Type 2 Diabetes Treated With Basal Insulin

A Randomized Clinical Trial

Published June 2, 2021

JAMA.

doi:10.1001/jama.2021.7444

Park Nicollet^{*} International Diabetes Center

AGP Report: Continuous Glucose Monitoring

What are we striving for in the AGP?

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if they occurred in a single day

Smart Pens Will Improve Insulin Therapy

David C. Klonoff, MD, FACP, FRCPE, Fellow AIMBE¹, and David Kerr, MBChB, DM, FRCPE²

Journal of Diabetes Science and Technology 2018, Vol. 12(3) 551–553
© 2018 Diabetes Technology Society Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1932296818759845 journals.sagepub.com/home/dst

International Diabetes Center

(\$)SAGE

HealthPartners

- A reusable pen or smart pen cap paired with CGM or BGM to track/record insulin and glucose metrics
- Linked to app on smartphone
- Data can be shared with the clinic
- Tracks "insulin-on-board" (IOB) to prevent insulin stacking
- Built in dose calculators
- Useful tools such as reminders, low glucose alerts, insulin expiration dates, and temperature

Currently Approved Insulin Smart Pen Technology

Medtronic InPen with Guardian Connect or Dexcom G6

Bigfoot Unity with Abbott Freestyle Libre 2

InPen app

Dose calculator, insulin on board, dose settings, alerts, reports

V-Go: Disposable Patch Pump Insulin Delivery

- One V-Go patch pump each day
- Patient fills V-Go with rapid-acting insulin (requires separate prescription)
- One push = 2 units (36 units total available for mealtime bolus)
- Three V-Go Basal Rate Options; 20, 30, and 40 units/24-hour period

CeQur Simplicity

- Insulin patch pump worn for 3 days
- Gives bolus insulin only
- Holds up to 200 units of rapid-acting insulin
- Boluses in 2-unit increments
- Can bolus through clothing
- Water-resistant

Comparing Patch vs Pen Bolus Insulin Delivery in Type 2 Diabetes Using Continuous Glucose Monitoring Metrics and Profiles

Journal of Diabetes Science and Technology I-7
© 2021 Diabetes Technology Society
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/19322968211016513
journals.sagepub.com/home/dst

\$SAGE

Richard M. Bergenstal, MD¹, Mary L. Johnson, RN, CDCES¹, et al.

Standard Insulin Pen (n=48)

Comparing Patch vs Pen Bolus Insulin Delivery in Type 2 Diabetes Using Continuous Glucose Monitoring Metrics and Profiles

Journal of Diabetes Science and Technology 1–7
© 2021 Diabetes Technology Society
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/19322968211016513
journals.sagepub.com/home/dst

\$SAGE

Richard M. Bergenstal, MD¹, Mary L. Johnson, RN, CDCES¹, et al.

Percentage	who	used	patch

Participant preference (patch vs pen)	for 44 weeks, $(n = 45)$	95% CI	P-value
More satisfied using the patch vs the pen for mealtime insulin therapy	77.8%	62.9, 88.8	<.0001
Prefer using the patch vs the pen for mealtime insulin therapy	77.8%	62.9, 88.8	<.0001
Had to carry fewer diabetes supplies with me	88.6%	75.4, 96.2	<.0001
Feel less constrained with my diabetes management	84.4%	70.5, 93.5	<.0001
Feel more freedom with my diabetes management	82.2%	67.9, 92.0	<.0001
Would recommend the patch vs the pen to other patients who are on mealtime insulin therapy	80.0%	65.4, 90.4	<.0001
Want to switch from the pen to the patch	77.8%	62.9, 88.8	<.0001

The Digital/Virtual Diabetes Clinic - the Future State

Recommendations from International Panel on Diabetes Digital Technology

Questions?

