

New treatment option for mild persistent asthma¹

Use a LABA/ICS combination on an "as needed" basis to reduce ICS use by over 75%¹

Obstructive Sleep Apnea (OSA)²

- OSA treatment is directed at symptom improvement, data does not support improved CV outcomes with OSA treatment
- Home sleep study is preferred over facility study with improved patient acceptance, improved OSA outcomes, and 67% cost reduction
- Mandibular advancement devices may be helpful up to Apnea-Hypopnea Index (AHI) of 30
- Auto-titrating CPAP is preferred over facility CPAP titration

Management and Treatment Recommendations

Not indicated outside the parameter of the National Lung Screening Trial (NLST)³

Overall mortality reduction with screening 0.4%

False positive rate of screening exceeds 96%⁴

Shared decision making is essential

Use Fleischner nodule algorithm for follow-up guideline⁵

COPD Management

Treatment is predominately for symptom control and not preservation of lung function

LAMA* therapy is superior to LABA** as a single agent

ICS use is for the asthmatic subtype or severe COPD with frequent exacerbations

Mortality is predicted better by degree of dyspnea than degree of lung function impairment⁶

* Long-acting antimuscarinic agent

**Long-acting beta-agonists

Pulmonary Embolus (PE)

61% of CTA's are inappropriate due to low risk

Use Dichotomized Wells Score and D-dimer for low risk patients

Provoked DVT*/PE should be treated for 3 months⁷

Consider lifelong therapy in unprovoked DVT/PE⁷

Subsegmental PE may not need treatment if no ongoing PE risk

*Deep Venous Thrombosis

COPD Best Practices

- Pulmonary rehabilitation is of benefit in GOLD stages 3 and 4
- Daytime oxygen is not of benefit with mild to moderate daytime hypoxia
- ✓ Advanced care planning is essential when COPD is advanced

¹*NEJM, 378,* 1865-1876. doi:10.1056/NEJMoa1715274

²Annals of Internal Medicine, 166(5), 332-340. doi:10.7326/M16-1301

³NEJM, 365, 395-409. doi:10.1056/NEJMoa1102873

⁴JAMA Internal Medicine, 178(3), 326-327. doi:10.1001/jamainternmed.2017.8217

⁵ https://pubs.rsna.org/doi/pdf/10.1148/radiol.2017161659

⁶*Chest*. 2002 May;121(5):1434-40

⁷Chest, 149(2), 315-352. doi:10.1016/j.chest.2015.12.005