A New Approach for Evaluating Renal Function and Predicting Risk

William McClellan, MD, MPH Emory University Atlanta

Goals

- Understand the limitations and uses of creatinine based measures of kidney function
- Understand the evolving role of albuminuria measurement in CKD risk stratification
- Understand the prognostic use of measures of change of GFR (slope)

Definition of Chronic Kidney Disease (CKD)

- Etiology: primary cause of renal injury defined by history, clinical and laboratory presentation, isolated anatomic abnormalities, and radiographic evidence.
- Functional: biomarkers to measure impaired renal function
 - Creatinine
 - Proteinuria: ACR, dipstick
- Chronicity: presence for 3 or more months
 - Persistence
 - Progression

Etiology of CKD leading to ESRD (82 categories)

ICD-9

ICD-9

DIABETES

25040 Diabetes with renal manifestations Type 2

NARRATIVE

25041 Diabetes with renal manifestations Type 1

GLOMERULONEPHRITIS

- 5829 Glomerulonephritis (GN)
- (histologically not examined)
- 5821 Focal glomerulosclerosis, focal sclerosing GN
- 5831 Membranous nephropathy
- 58321 Membranoproliferative GN type 1, diffuse MPGN
- 58322 Dense deposit disease, MPGN type 2
- 58381 IgA nephropathy, Berger's disease (proven by immunofluorescence)
- 58382 IgM nephropathy (proven by immunofluorescence)
- 5834 With lesion of rapidly progressive GN
- 5800 Post infectious GN, SBE
- 5820 Other proliferative GN

SECONDARY GN/VASCULITIS

- 7100 Lupus erythematosus, (SLE nephritis)
- 2870 Henoch-Schonlein syndrome
- 7101 Scleroderma
- 28311 Hemolytic uremic syndrome
- 4460 Polvarteritis
- 4464 Wegener's granulomatosis
- 58392 Nephropathy due to heroin abuse and related drugs
- 44620 Other Vasculitis and its derivatives
- 44621 Goodpasture's syndrome
- 58391 Secondary GN, other
- Social Secondary ON, other

INTERSTITIAL NEPHRITIS/PYELONEPHRITIS

- 9659 Analgesic abuse
- 5830 Radiation nephritis
- 9849 Lead nephropathy
- 5909 Nephropathy caused by other agents
- 27410 Gouty nephropathy
- 5920 Nephrolithiasis
- 5996 Acquired obstructive uropathy
- 5900 Chronic pyelonephritis, reflux nephropathy
- 58389 Chronic interstitial nephritis
- 58089 Acute interstitial nephritis
- 5929 Urolithiasis
- 27549 Other disorders of calcium metabolism

HYPERTENSION/LARGE VESSEL DISEASE

- 40391 Unspecified with renal failure
- 4401 Renal artery stenosis
- 59381 Renal artery occlusion
- 59383 Cholesterol emboli, renal emboli
- FORM CMS-2728-113 (05/04)

CYSTIC/HEREDITARY/CONGENITAL DISEASES

- 75313 Polycystic kidneys, adult type (dominant)
- 75314 Polycystic, infantile (recessive)
- 75316 Medullary cystic disease, including nephronophthisis

NARRATIVE

- 7595 Tuberous sclerosis
- 7598 Hereditary nephritis, Alport's syndrome
- 2700 Cystinosis
- 2718 Primary oxalosis
- 2727 Fabry's disease
- 7533 Congenital nephrotic syndrome
- 5839 Drash syndrome, mesangial sclerosis
- 75321 Congenital obstruction of ureterpelvic junction
- 75322 Congenital obstruction of uretrovesical junction
- 75329 Other Congenital obstructive uropathy
- 7530 Renal hypoplasia, dysplasia, oligonephronia
- 75671 Prune belly syndrome
- 75989 Other (congenital malformation syndromes)

NEOPLASMS/TUMORS

- 1890 Renal tumor (malignant)
- 1899 Urinary tract tumor (malignant)
- 2230 Renal tumor (benign)
- 2239 Urinary tract tumor (benign
- 23951 Renal tumor (unspecified)
- 23952 Urinary tract tumor (unspecified)
- 20280 Lymphoma of kidneys
- 20300 Multiple myeloma
- 20308 Other immuno proliferative neoplasms
- (including light chain nephropathy)
- 2773 Amyloidosis
- 99680 Complications of transplanted organ unspecified
- 99681 Complications of transplanted kidney
- 99682 Complications of transplanted liver
- 99683 Complications of transplanted heart
- 99684 Complications of transplanted lung
- 99685 Complications of transplanted bone marrow
- 99686 Complications of transplanted pancreas
- 99687 Complications of transplanted intestine
- 99689 Complications of other specified transplanted organ

MISCELLANEOUS CONDITIONS

- 28260 Sickle cell disease/anemia
- 28269 Sickle cell trait and other sickle cell (HbS/Hb other)
- 64620 Post partum renal failure
- 042 AIDS nephropathy
- 8660 Traumatic or surgical loss of kidney(s)
- 5724 Hepatorenal syndrome
- 5836 Tubular necrosis (no recovery)
- 59389 Other renal disorders
- 7999 Etiology uncertain

Assessment of Kidney Function

The Perils of Using Serum Creatinine Only to "Guess" level of Renal Function

Fstimated

Scr	Age	Sex	Ethnicity	GFR
1.4	45	Μ	White	71
1.4	45	F	Black	52
1.4	70	Μ	Black	63
1.4	70	F	White	41

Creatinine $C_{CR} = \frac{U_{CR} \times V}{P_{CR}}$

MDRD equation: better estimation of GFR

- GFR mL/min/1.73 m² = 186 x (Scr)*-1.154 x (Age)*-0.203 x (0.742 if female) x (1.210 if black)
- PDA calculator: http://www.kidney.org/professionals/kdoqi/
- Online GFR calculator
- Clinical Laboratory Guidelines http://www.nkdep.nih.gov/healthprofessionals/

http://www.nkdep.nih.gov/healthprofessionals/tools/gfr_adults.htm

Limitations to creatinine measurement

(1) Modified creatinine production

a) Muscle mass Increased (black race, male)

- Decreased (amputation, cachexia, age, female)
- b) Diet: ingested cooked meat and protein restriction

(2) Creatinine secretion

a) Modified by cimetidine, trimethoprim

(3) Creatinine assay standardization and calibration (traceable to an isotope dilution mass spectrometry (IDMS) reference measurement procedure)

1.4.3: Evaluation of GFR: KIDNEY DISEASE | IMPROVING GLOBAL OUTCOMES (KDIGO) 2012 Guidelines

1.4.3.1: Use serum creatinine and a GFR estimating equation for initial assessment. (1A)

1.4.3.2: Use additional tests (cystatin C or creatinine clearance) in specific circumstances when eGFR based on serum creatinine is less accurate.(2B)

1.4.3.3: We recommend that clinicians (1B): use a GFR estimating equation to derive GFR from serum creatinine (eGFRcreat) rather than relying on the serum creatinine concentration alone and understand clinical settings in which eGFRcreat is less accurate.

Ann Intern Med. 2013;158:825-30.

Measuring albumin excretion

CKD Prognosis Consortium

	Region	Number of participants	Age, mean (years)	Male (%)	Black (%)
Studies with AC	R measurement	ts			_
ARIC ²⁰	USA	11408	63	44%	22%
AusDiab*21	Australia	11244	52	45%	0
Beijing ²²	China	1563	60	50%	0
CHS ²³	USA	3230	78	40%	16%
COBRA ²⁴	Pakistan	2872	52	48%	0
Framingham ⁷⁵	USA	2956	59	47%	0
Gubbio ²⁶	Italy	1684	55	45%	0
HUNT ⁵	Norway	9525	62	45%	0
MESA ²⁷	USA	6705	62	47%	28%
NHANES III ¹⁵	USA	15853	47	47%	27%
PREVEND ²⁸	Netherlands	8370	49	50%	1%
Rancho Bernardo ²⁹	USA	1759	71	39%	0
REGARDS ³⁰	USA	27583	65	45%	42%
ULSAM ³¹	Sweden	1120	71	100%	0
Studies with dip	stick measuren	nents			
AKDN ¹⁶	Canada	690680	47	45%	NA
Beaver Dam ³²	USA	4926	62	44%	0
ESTHER ³³	Germany	9350	62	45%	0
MRC Older People ³⁴	UK	12158	81	39%	0
Ohasama ³⁵	Japan	1466	63	34%	0
Severance ³⁶	South Korea	42 6 37	46	51%	0
Taiwan ³	Taiwan	367 093	42	50%	0

Lancet. 2010; 375:2073-81

Figure 3: Hazard ratios and 95% CIs for all-cause and cardiovascular mortality according to spline estimated glomerular filtration rate (eGFR) and categorical albuminuria

Lancet. 2010 Jun 12;375:2073-81

Risk stratification: Combining information about eGFR and ACR

Prognosis of CKD by GFR and Albuminuria Categories: KDIGO 2012				Persistent albuminuria categories Description and range			
			A1 Normal to mildly increased	A2 Moderately increased	A3 Severely increased		
			<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol		
m²)	G1	Normal or high	≥90				
categories (ml/min/ 1.73 Description and range	G2	Mildly decreased	60-89				
	G3a	Mildly to moderately decreased	45-59				
	G3b	Moderately to severely decreased	30-44				
	G4	Severely decreased	15-29				
GFR	G5	Kidney failure	<15				

Prognosis of CKD by GFR and albuminuria category

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

Am J Kidney Dis. 2014; 63:713-35

Figure 1. | Unadjusted age-specific prevalence of concurrent complications of chronic kidney disease by estimated GFR (eGFR, ml/min per 1.73 m²).

Clin J Am Soc Nephrol. 2011;6:2822-8.

GFR over time (Slope): Early Intervention important to preserve kidney function

(45-20)ml/min/1.73m2/(60-10) months= 25/50 = 0.5ml/min/1.73m²/mo or 6ml/min/1.73m²/yr. This is a 27% reduction in GFR over 2yrs.

Months

Slopes are variable in patients with CKD

Mean three-year two-slope mixed-effects GFR slopes for participants in the MDRD study A or overall GFR slope for participants in Study B by baseline GFR. Kidney Int. 1997; 51:1908-19.

Change in GFR in Cohort of > 2300 CKD Patients: the CRIOS Study

Rate of Change in GFR (per Month)

JAMA. 2014;311(24):2518-2531.

A CKD Clinical Action Plan

CKD Management	Stages 1-2	Stage 3	Stage 4	Stage 5
GFR mL/min/1.73 m ²	>60	30-59	15-29	<15
BP<130/80 mm Hg				
ACEI/ARB				
Lipids/smoking				
NSAIDs/contrast				
Anemia				
Nutrition				
Vascular access				

http://www.nkdep.nih.gov/healthprofessionals/tools/template.asp. Accessed 3/24/05.

Check list for contemporary evaluation of renal function and risk in patients with CKD

- Clinical lab: IDMS calibrated assay?
- Electronic medical record: Reports eGFR and creatinine?
- Both eGFR and ACR assessed in CKD?
 - Combined to a KDIGO risk stratification?
- eGFR slope periodically assessed?
- Clinical decision making reflects KDIGO stage and eGFR slope?