

CAR T-cell Therapy: A Personalized Immunotherapy Approach to Cancer

Shannon Maude, MD PhD Cancer Immunotherapy Program Children's Hospital of Philadelphia The University of Pennsylvania School of Medicine

OptumHealth Education April 12, 2019

Disclosures

- Consultancy:
 - Novartis advisory boards, clinical trial development
 - Kite advisory board

- CTL019 (now known as Kymriah, tisagenlecleucel) licensed by Novartis
- CTL119 (investigational product) licensed by Novartis

Outline

CAR T cell Therapy

- Chimeric Antigen Receptor (CAR) Design
- CAR T cell Trials and Outcomes

Toxicity

- Cytokine Release Syndrome (CRS)
- Neurotoxicity

Logistics

• Getting patients to CAR T cell therapies

What's next for CAR T cell Therapy?

Cellular Immunotherapy with CAR T cells

Chimeric Antigen Receptor (CAR)

CAR links extracellular antibody to intracellular T cell signaling domains

- Recognition: scFv binds antigen on tumor cell
- Activation: linked to activation signals Selecting a target antigen:
- Ideally, universally expressed on tumor cells and not expressed on normal cells, but RARE
- Close to ideal CD19 as example:
 - Expressed on most B cell malignancies
 - Expression restricted to B cells

CAR T cell Engineering

- T cells collected from patient
- Lentiviral vector introduces gene encoding CAR
- CAR links extracellular antibody to intracellular T cell signaling domains
- T cells expanded ex vivo
- Reinfused → come in contact with antigen → engage CAR → cytotoxic response and in vivo proliferation
- Persistent CART19 (CTL019) cells may allow long-term disease control

Pediatric Acute Lymphoblastic Leukemia (ALL)

Phase 1/2a Trial of CTL019 in Pediatric ALL

1.0 0.8 Probability 0.6 0.4 0.2 12-month 60% (95% CI: 48,75) 24-month 53% (95% CI: 39,70) 0.0 q 27 30 33 12 21 24 36 15 N:56

Relapse–free Survival

CR: 56/60 (93%)

CNS control: 11/15 pts with CNS disease within 12 mo remained in continuous CR

RFS: 12 mo – 60% (48, 75) 24 mo – 53% (39, 70)

7 pts proceeded to SCT, 1 to DLI - 2 relapses after SCT

Median f/u: 15 mo (1-48 mo)

Maude et al., ASCO 2016

NCI CD19-28 CAR

- 31/51 (60.8%) CR, 28 MRDin children and young adults with R/R B-ALL
- Median Leukemia-free survival 18 mo in 28 MRD-CR
- 21/28 receiving subsequent
 SCT

Lee D et al. ASH 2016

FHCRC CD19-4-1BB CAR

- 40/43 93% MRD- CR in children and young adults with R/R B-ALL
- 12mo EFS 50.8% (95% Cl, 36.9-69.9%)
- 11 underwent HSCT
 Gardner RA et al. Blood 2017; 129: 3322-3331.

ELIANA Phase 2 Trial of CTL019

Table S1. Patient Demographics and Baseline Clinical Characteristics.

	Patients
	(N = 75)
Age, median (range), years	11 (3-23)
Male, n (%)	43 (57)
Prior stem cell transplant, n (%)	46 (61)
Previous line of therapies, median (range), n	3 (1-8)
Disease status, n (%)	
Primary refractory	6 (8)
Chemo-refractory or relapsed	69 (92)
Morphologic blast count in bone marrow, median (range), %	74 (5-99)
CNS status classification, n (%)*	
CNS-1	63 (84)
CNS-2	10 (13)
CNS-3	1 (1)
Unknown	1 (1)
High-risk genomic lesions, n (%) ⁺	28 (37)
Down syndrome, n (%)	6 (8)

CNS, central nervous system.

* The most current assessment on or prior to the date of enrollment. * *BCR-ABL1*, *MLL* rearrangement, hypoploidy, lesions associated with *BCR-ABL1*-like gene signature, or complex karyotype (\geq 5 unrelated abnormalities).

Maude SL et al. N Engl J Med 2018;378:439-448

Duration of Remission, Event-free and Overall Survival

Primary Endpoint: 61/75 CR/CRi (81%)

RFS: 59% (95% CI, 41 to 73) at 12 mo 8 underwent HSCT

Maude SL et al. N Engl J Med 2018;378:439-448

August 30, 2017 – The FDA approved the first CAR T cell therapy, Kymriah[™] for children and young adults up to age 25 with B-ALL that is refractory or in second or greater relapse

August 23, 2018 – EMA approval

September 6, 2018 – Health Canada approval

Outline

CAR T cell Therapy

- Chimeric Antigen Receptor (CAR) Design
- CAR T cell Trials and Outcomes

Toxicity

- Cytokine Release Syndrome (CRS)
- Neurotoxicity

Logistics

• Getting patients to CAR T cell therapies

What's next for CAR T cell Therapy?

ELIANA Phase 2 Trial of CTL019 – Adverse Events

Table 2. Grade 3 or 4 Adverse Events Suspected to Be Related to Tisagenlecleucel That Occurred in at Least 5% of Patients.				
≤8 Wk after Event (N =		er Infusion = 75)	>8 Wk to 1 Yr after Infusion (N=70)	
	Grade 3	Grade 4	Grade 3	Grade 4
	number of patients (percent)			
Any grade 3 or 4 adverse event	19 (25)	33 (44)	8 (11)	4 (6)
Cytokine release syndrome	16 (21)	19 (25)	—	
Hypotension	7 (9)	6 (8)	_	—
Decrease in lymphocyte count	5 (7)	4 (5)	1(1)	-
Нурохіа	5 (7)	3 (4)	_	_
Increase in blood bilirubin	8 (11)	_	_	_
Increase in aspartate aminotransferase	5 (7)	2 (3)	_	—
Pyrexia	5 (7)	2 (3)	-	-
Decrease in neutrophil count	1 (1)	6 (8)	1 (1)	1 (1)
Decrease in white-cell count	_	7 (9)	_	_
Decrease in platelet count	3 (4)	4 (5)	_	—
Decrease in appetite	6 (8)	1(1)	—	
Acute kidney injury	3 (4)	3 (4)	_	—
Hypophosphatemia	5 (7)	1(1)	-	_
Hypokalemia	6 (8)	_	_	_
Pulmonary edema	4 (5)	1(1)	_	_
Thrombocytopenia	1 (1)	4 (5)	—	1 (1)
Encephalopathy	4 (5)		-	
Increase in alanine aminotransferase	4 (5)		_	_
Fluid overload	4 (5)	_	_	_

Maude SL et al. N Engl J Med 2018;378:439-448

CRS is related to T cell expansion

• Symptoms typically occur 1-14 days after CTL019 cell infusion in ALL

Hypotension Respiratory insufficiency Renal insufficiency Coagulopathy

• Severity scales with disease burden

Neurotoxicity

- Symptoms
 - Confusion/delirium
 - Expressive aphasia
 - Global encephalopathy
 - Tremor
 - Seizure
- Management
 - Supportive care/seizure management
 - Steroids?
- Pathophysiology
 - Cytokine-mediated?

Toxicity Summary

- CRS associated with CAR T cells can be safely managed
 - Requires specialized treatment
 - Cytokine blockade effective
 - Early cytokine data may be useful in CRS prediction models
 - Future studies will explore early intervention
- Neurotoxicity
 - Differs across diseases
 - Managed with supportive care
 - Just beginning to understand pathophysiology
 - Future studies needed to explore mechanism, which may inform prevention and treatment

Outline

CAR T cell Therapy

- Chimeric Antigen Receptor (CAR) Design
- CAR T cell Trials and Outcomes

Toxicity

- Cytokine Release Syndrome (CRS)
- Neurotoxicity

Logistics

• Getting patients to CAR T cell therapies

What's next for CAR T cell Therapy?

- Population: Patients with B-ALL in 2nd or greater relapse or refractory
- Time from screening to treatment weeks
- Need to stabilize and maintain eligibility

 Screen patients who have received prior CD19-directed therapy (eg blinatumomab) for CD19 expression

- At relapse
 - Considerations: WBC count, blast count
- After chemotherapy
 - Considerations: timing, type of chemotherapy, ALC
- After SCT
 - Considerations: timing, GVHD, immunosuppression

Time from screening to treatment – weeks

- Goals:
 - Prevent rapid progression
 - Avoid organ toxicity and infectious complications
 - NOT to induce remission or reduce disease burden

Given 1 week prior to infusion

- Purpose:
 - Disease control
 - Induce lymphopenia to facilitate engraftment and homeostatic expansion of CTL019 T cells
- Agents:
 - Cyclophosphamide 500 mg/m² IV daily Days 1-2,
 Fludarabine 30 mg/m² IV daily Days 1-4

CAR T Cell Infusion

- Premedication:
 - Tylenol and Benadryl
- Infusion:
 - Cell product thawed per Stem Cell Lab SOPs
 - Outpatient infusion center
 - Infused over 2-10 minutes by trained staff
 - Vital signs monitored every 15 minutes for 1 hour
 - Acute infusional toxicities rare

Management of Toxicity

- Cytokine Release Syndrome (CRS)
- Neurotoxicity

- Clinical care team:
 - Oncologists and BMT physicians
 - Core group focused on management of CAR T cell toxicities
 - Critical care
 - Neurologists

Long-term Management

- Monitoring response and persistence
 - B cell aplasia in first 6 months
- B cell aplasia:
 - Immunoglobulin replacement
 - Required in peds
 - Possibly not in adults?
 - Subcutaneous immunoglobulin for chronic B cell aplasia
 - Monitor lgG
 - Monitor for chronic sinusitis
- Prolonged cytopenias
 - More common in patients with prolonged cytopenias prior to infusion and post-SCT patients

Logistical Issues

- Transfer of care
 - Treatment at specialized care centers
 - Travel/housing
- Peri-infusion management
 - Limited group to focus on CAR T
 - Communication to other services
 - Spacing infusions
- Long-term management
 - Collaborative care: primary haematologist and infusion center

Cancer Immunotherapy Program

Outline

CAR T cell Therapy

- Chimeric Antigen Receptor (CAR) Design
- CAR T cell Trials and Outcomes

Toxicity

- Cytokine Release Syndrome (CRS)
- Neurotoxicity

Logistics

• Getting patients to CAR T cell therapies

What's next for CAR T cell Therapy?

Expanding the role in B cell malignancies

- Moving into upfront therapy for VHR subsets at high risk of relapse
- Phase 2 trial in pediatric NHL
- Planning trials in other VHR populations
 - Down Syndrome B-ALL in first relapse
 - Hypodiploid B-ALL
 - B-ALL with t(17;19)

What's next for cell therapy in pediatric cancers?

Overcoming relapse

- CD19+ relapse due to short persistence
 - o Immune-mediated rejection?
 - T cell intrinsic?
- CD19- relapse due to antigen escape

Persistence Variables

- CAR design
 - CD28 domain associated with more rapid early proliferation and more rapid loss (by 2 months in most cases)
 - 4-1BB domain associated with somewhat slower initial proliferation and prolonged persistence (years)
- Immune-mediated rejection
 - Anti-murine, anti-CAR
- T cell repertoire
 - Naïve and central memory T cells persist longer
 - Manufacture process may contribute or may be T cell intrinsic

Overcoming relapse

- CD19+ relapse due to short persistence
 - Immune-mediated rejection? *Humanized CAR trial* ongoing at CHOP
 - T cell intrinsic? *Combinations to improve T cell function*
- CD19- relapse due to antigen escape
 - Alternative targets CD22 CAR trials ongoing
 - Combination CARs

Conclusions

- CD19 CARs demonstrate the potential for cell therapy in pediatric cancers
 - High CR rates in refractory leukemias
 - Toxicity management for safe administration
- Cell therapies well-suited to pediatric cancers, which tend to be less heterogenous
- To expand the potential
 - Increase durable remission rates by overcoming relapse through
 - Improved persistence
 - Dual targeting
 - Combinations and innovative CAR designs may be needed to expand into other tumor types

<u>Penn CCI</u> Carl June Anne Chew Regina Young

<u>CVPF</u> Bruce Levine Don Siegel Andrew Fesnak

Penn Statistics Pamela Shaw Ann Tierney

<u>TCSL</u> Simon Lacey Jeff Finklestein Farzana Nazimuddin Vanessa Gonzalez **CHOP** Cancer Immunotherapy Program **Stephan Grupp** Shannon Maude Amanda DiNofia Lisa Wray Sue Rheingold **Colleen** Callahan **Diane Baniewicz Amy Barry** Penn Clinical

David Porter Noelle Frey

<u>Grupp Lab</u> David Barrett David Teachey Alix Seif

The Children's Hospital of Philadelphia®

CHOP Nursing

CTO/IND Office

CHOP Stem Cell Lab Yongping Wang

CHOP Vector Core Frasier Wright

Adaptive TcR

Patients and Families <u>Novartis</u>

Perelman School of Medicine

> David Lebwohl Tetiana Taran Patricia Wood Jennifer Brogdon

St. Baldrick's FOUNDATION Canquer Childhood Cancers

The Leukemia & Lymphoma Society Fighting Blood Cancers