Genomic Medicine in Advanced Heart Failure Brian D. Lowes, MD PhD 7/8/2014 Conflicts of Interest: None

DURHAM RESEA

Goals/Objectives

- Discuss inherited cardiomyopathies and describe their genetics
- Understand current options, strategies, and limitations for genetic testing
- Integrate this knowledge into diagnostic and treatment protocols to improve the care of patients and their families

Prometheus: Greek Mythology

• "Or, like the thief of fire from heaven, Wilt thou withstand the shock? And share with him-the unforgiven-His vulture and his rock?"

SUPREME COURT OF THE UNITED STATES Syllabus MAYO COLLABORATIVE SERVICES, DBA MAYO MEDICAL LABORATORIES, ET AL. v. PROMETHEUS LABORATORIES, INC. CERTIORARI TO THE UNITED STATES COURT OF APPEALS FOR THE FEDERAL CIRCUIT

No. 10–1150. Argued December 7, 2011—Decided March 20, 2012

"we conclude that the patent claims at issue here effectively claim the underlying laws of nature themselves. The claims are consequently invalid. And the Federal Circuit's judgment is reversed. It is so ordered.

Patent on measuring metabolites of thiopurine drugs

SUPREME COURT OF THE UNITED STATES

Syllabus ASSOCIATION FOR MOLECULAR PATHOLOGY ET AL. v. MYRIAD GENETICS, INC., ET AL. CERTIORARI TO THE UNITED STATES COURT OF APPEALS FOR THE FEDERAL CIRCUIT No. 12–398. Argued April 15, 2013—Decided June 13, 2013

"We merely hold that genes and the information they encode are not patent eligible under §101 simply because they have been isolated from the surrounding genetic material.

For the foregoing reasons, the judgment of the Federal Circuit is affirmed in part and reversed in part. "

It is so ordered.

Myriad 14 patents on BRCA1/2 genes

Genetics of Cardiomyopathies

- Historically: Testing was expensive, limited to a few genes, interpretation and application of the results was difficult.
- 2013: Rapidly sequence a persons genome at a reasonable cost. Informatics are fundamentally altering our ability to gather, interpret and apply genetic information.

The Future is Now

	ne Pjamace Postera Rodec COResults References Co	e Orders Electrolers Togolian Right Bolt Financial		
Neg citali	Search # Both C Medical	C Procedure		Diged ; Entrituite
House hersels deduction				Phases of Ca
Becerer Procedures (1 Ord	er)			
	neration sequencing (NGS) testing		Books	Cancel Remove
Clark P	Rodine NGS Panal salaritors NGS Cardiomyopathy Panal			
Prover.	Roubne D STAT			
date Class	Christ Cotter(20 Lah Draw Council Edemail			
O Tovomny Brs.	(p)			
dverbone Guerbone	1. NOD Panel salection	Address		
Academy .	1. Nego Panet selection		2 Fanel 100 Connective Tissue Disorders Panel hGS Noonan Panel , NGS Osteogenesis Imperfecta Panel 14GS Ret Appical R strg	et Angelman Panel
Para	2. Gene Selection - Required Select Gene Only	(D) Fails Seart Gara	Testing	
	3. Family and/or shrinal history			
	Eirgen versamene			
dia Coherines IV	Prof to the D BD & manufact	路 会会本課		
	CRETCH MOS CREATOR TRATMC Des 3.4 of EDT	bornis bei bine Menneum zumzie bei neutom is 1.6 ml EDTé /warris bei b	for Plana v mediatifies Marrian Constant Latt of 205,855,8575 will now manifolds	1
Propriet	GENETICE, NOS GENETICE TEXTING, ON 3.5 mL E07	gegie lugi kon Wennen genyis for inneren is 13 mil 6072 (perpie lugi k	te Pisase control the Human Generics Lat. at \$22,558,5579 with me are stress. Acces	L Cancel Remove
	OBJETICI, NOS OBJETICS TEETING, DHI 3.8 mL SDT	gergië higt hete. Wenneem samgele for earedone tie 1.8 mil. ECTA (gergie higt be	Gocep	I Gancel Remov
	GRANTICE HOS GRATICE TEXTING CHI 3 8 HL GOT	geogle bej bele. Mennum sample for hereben is 13 mil 1073 (geogle bej be	Gocep	and the Westman and the American State
	panin (newsam (n.)		Gocep	and the Warner of State State State of State

		Next Generation	on Sequencing Re	port
	677 eferral: Ca	NGS Cardiomyop ardiomyopathy	pathy panel	
Pathogenic m Please see detai		etected in the LMNA gene. ation below.		
Gene	Chrom	Amino Acid Chg	Nucleotide Chg	NGS Result
LMNA	chr1	NP_733821.1:p.Glu161Lys	NM_170707:c.481G>A	Pathogenic



HUMAN GENETICS LABORATORY

MUNROE-MEYER INSTITUTE FOR GENETICS AND REHABILITATION 985440 Nebraska Medical Center | Omaha, NE 68198-5440 | 402-559-5070

MEDICAL CENTER WWW.UNMC.edu/geneticslab

Genetic Testing

Loss of Function Variants are Common

- Loss of function variants: mutations that are predicted to cause severe disruption in protein coding genes (stop codons, splice, frame shift indel, large deletions..)
- Healthy individuals typically contain between 100 LOF variants

MacArthur et al Science 2012

FDA and 23andMe

 Warning letter: 23andMe failed to supply any indication that it had analytically or clinically validated the PGS for its intended uses

Anna et al NEJM 2014

Clinical Case 1

- 28 y/o male who is referred for f/u from the emergency room
- Previously well, presented to the ER with palpitations that were noticed to be paroxysmal atrial fibrillation
- Dad has a dilated cardiomyopathy and is listed for heart transplant

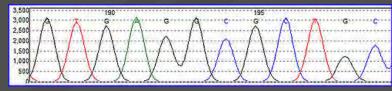
What to Do?

- Event Monitor
- Cardiac MRI
- Next Generation Sequencing for Cardiac Genes (on who?)
- Genetic Counselor
- Ask for more history
- Do nothing

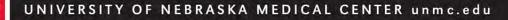
More History

- Dad presented in his 30's with atrial fibrillation, developed a dilated cardiomyopathy and frequent ventricular tachycardia and required a LVAD and heart transplant.
- Dad has a heterozygous nucleotide change (c.481G>A) in exon 2 of the LMNA gene. This nucleotide change predicts an amino acid change from glutamine to lysine (p.E161K) resulting in a missense mutation.

Ask your doctor

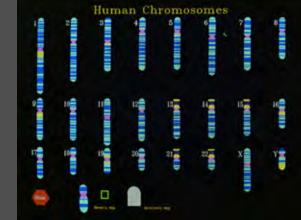

History Of DNA Sequencing

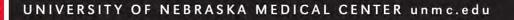
• Late 1970's



- Sanger Sequencing: Frederick Sanger, 2 nobel prizes in chemistry, 1918-2013
 - fluorescent labels, capillary gel electrophoresis
 - Predominant DNA sequencing technology for the next 30 years
 - Is still the gold-standard for routine day-to-day molecular diagnostic sequencing

-Routinely used for sequencing of DNA fragments in a variety of molecular biological research contexts

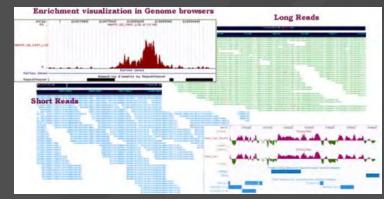

ATGC



Background: Human Genome Project

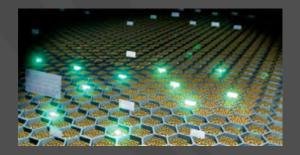
- 2003 First Human Genome Sequenced
 - Sanger Sequencing: Applied Biosystem (ABI) capillary sequencers
 - Time Frame: 1990 2003

Cost: ~ 2.7 billion dollars


Next Generation Sequencing of Whole Genome

2008- First human genome by NGS

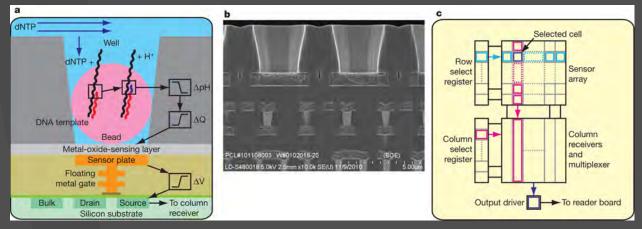
- Time 5 months
- Cost 1.5 million dollars

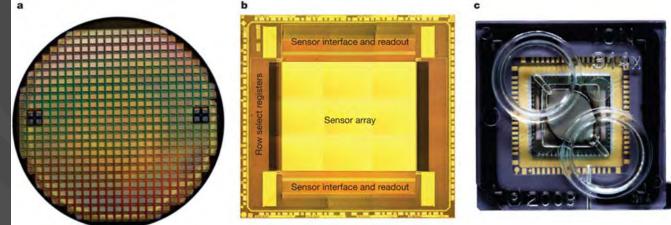

 Many individual human genomes sequenced since then in a variety of contexts using NGS.

- 2011 6k dollars, 10 days
- 2013 1k dollars, 2-3 day

Next Generation Sequencing Platforms

- Massive Parallel Sequencing of Clonal Amplified DNA Fragments millions
- Output are millions of short reads (relative to Sanger sequencing) of DNA sequence
- Clonal Amplified Fragments Spatially Separated all fragments sequenced simultaneously

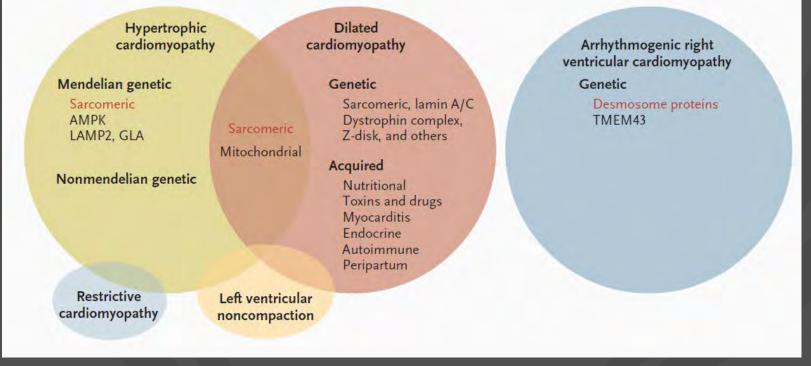



Roche 454 microtiter plate

Illumina flow cell

Semi-conductor Devices Enabling nonoptical Genome Sequencing

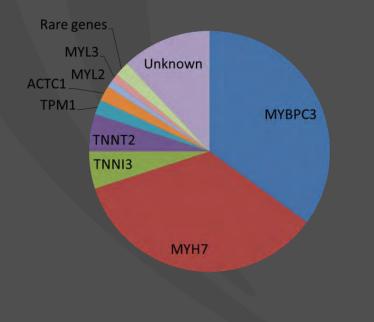
JM Rothberg et al. Nature 475, 348-352 (2011) doi:10.1038/nature10242

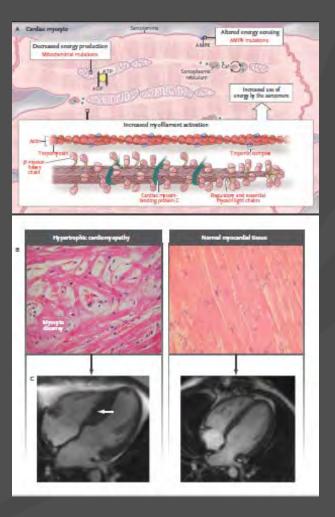

What are the Cardiomyopathies?

- "Cardiomyopathy" first used 1957
- WHO 1980: "Heart muscle disease of unknown etiology"
- AHA 2006: "Cardiomyopathies are diseases of the myocardium associated with mechanical and/or electrical dysfunction that usually exhibit inappropriate ventricular hypertrophy, or dilation and are due to a variety of causes that frequently are genetic."

Not Everything is Genetic "Acquired Cardiomyopathies"

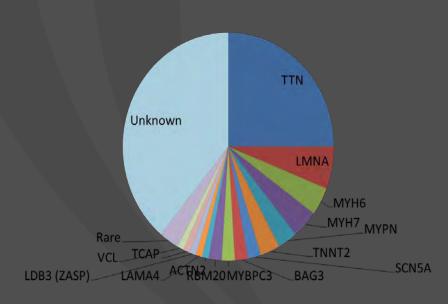
- Differential Dx Heart Failure:
 - Coronary artery disease, valvular, myocarditis, hypothyroidism, stress-induced, etoh, brain injury, nutritional deficiency (beriberi), chemotherapy, heavy metals.....
 - 5 Classes of Genetic Cardiomyopathies

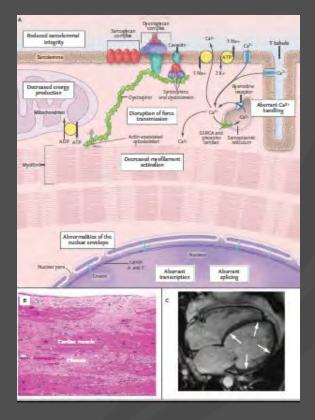

What are the Inherited Cardiomyopathies?



Watkins et al NEJM 2011

Hypertrophic Cardiomyopathies


Prevalence 1/500



Dilated Cardiomyopathies

Prevalence 1/1000

Watkins et al NEJM 2011

Dilated Cardiomyopathies and Advanced HF in Nebraska

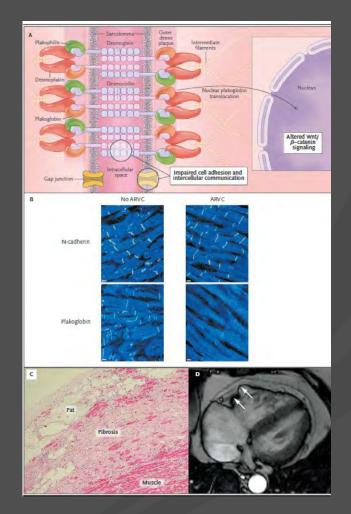
C	ardiac Gene	Prevalence	Mutation Type
DSC2		1/10	Ν
SCN5A		2/10	2 NA
RYR2		1/10	NA
MYH7		1/10	S
DSG2		1/10	Ν
STARD3		1/10	D
DES		1/10	D
MYH6		1/10	Ν
AKAP9		1/10	D
MSH2		1/10	D

7 males and 3 females with an average age of 52 and an average EF at presentation of 15%.

11 damaging or disease associated mutations in 10 genes. Damaging cardiac gene mutations were present in 9/10 patients.

N – Polymorphism, D – Disease causing, F- Frameshift, S – Splice, NA – No prediction

ARVC


• <u>ARVC</u>

۲

• PKP2

DSG2

- 11-43% 12-40%
- DSP 6-16%
- Rare/Less than 1%:
- DES DSC2
- LMNA PLN
- RYR2 TGFB3
- JUP TMEM43
- TTN
- EJHG 2013 e1-e4
- Gene Reviews

Watkins et al NEJM 2011

Other Cardiomyopathies

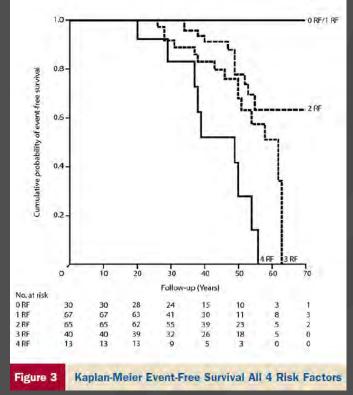
- <u>LVNC</u>
- (% unclear)
- ACTC1 CASQ2
- DTNA LDB3(ZASP)
- LMNA MYBPC3
- MYH7 TAZ
- TNNT2 VCL
- J Mol Diagn 2013, 15:158-170

- Restrictive Cardiomyopathy
- (Rare, % unclear)
- ACTC1 DES
- MYPBC3 MYH7
- MYL2 MYL3
- MYPN TNNI3
- TNNT2
- J Mol Diagn 2013, 15:158-170

TPM1

• AJMG 2011, 155(9):2229-2235

Next Generation Sequencing Cardiomyopathy Panel

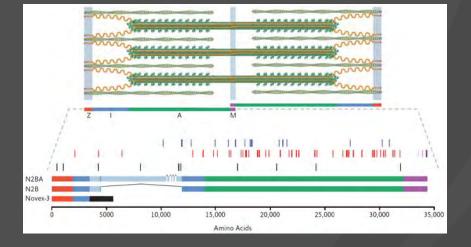

ABCC9	DSG2	LAMP2	RYR2
ACTC1	DSP	LDB3 (ZASP)	SCN1B
ACTN2	DTNA	LMNA	SCN4B6
AKAP9	EYA4	MYBPC3	SCN5A
ANK2	FHL1	МҮН6	SGCD
ANKRD1	FHL2	MYH7	SNTA1
BAG3	FKTN	MYL2	TAZ
CACNA1C	GLA	MYL3	TCAP
CACNB2	GPD1L	MYLK2	TGFB3
CALR3	JPH2	MYOZ2	TMEM43
CASQ2	JUP	MYPN	TNNC1
CAV3	KCNE1	NEXN	TNN/3
CRYAB	KCNE2	PKP2	TNNT2
CSRP3	KCNE3	PLN	TPM1
CTF1	KCNH2	PRKAG2	TTN
DES	KCNJ2	PSEN1	TTR
DMD	KCNQ1	PSEN2	VCL
DSC2	LAMA4	RBM20	A Real Property lies and the

Nebraska NGS Panel Covered Cardiac Disorders

- Hypertrophic cardiomyopathy
- Dilated cardiomyopathy
- LV non-compaction
- Restrictive cardiomyopathies
- Arrhythmogenic RV dysplasia
- Long-QT syndromes, Brugada syndrome, catacholminergic polymorphic ventricular tachycardia, familial amyloidosis...

Case: Event Free Survival in Lamin A/C Carriers

- Cohort of 269 patients who carry Lamin mutations
- Risk factors for malignant arrhythmias:
 - Male
 - LVEF < 45%
 - Nonsense mutations
 - Nonsustained ventricular tachycardia


Rijsingen et al JACC 2013

Clinical Case 2

- 36 y/o with a dilated cardiomyopathy referred for heart transplantation
- Mom, uncle and a cousin all have a dilated cardiomyopathies
- Just married, wants to have kids...
- Titan mutation of "unknown clinical significance"

Limitation: Uncertainty

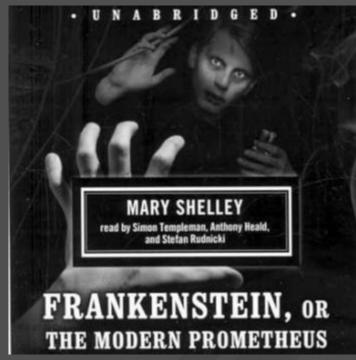
- " the c.7501C>T mutation has not been previously reported but is predicted to cause premature truncation of the protein product." (A nonsense mutation)
- Mutations are often "private", only exist within a family

Titan: Largest protein 72 unique mutations described

Herman et al NEJM 2012

Mutation Classification

- American College of Medical Genetics
- Reporting: Pathogenic, UCS-likely pathogenic, UCS, UCS-likely benign, Benign
 - minor allele frequencies (MAF)obtained from ~7,500 genomes(1000 from the 1000 Genome Project and 6,500 from the Exome Sequencing Project)
 - in silico prediction models ("SIFT" and "Polyphen")
 - database searches (LOVD, Emory, HGMD, UniProt (Universal Protein Resource) Knowledgebase...some genes have their own database as well)
 - literature searches
 - amino acid change effects
 - clinical correlation


Computing and Informatics

- Tianhe-2
 - 34,000 trillion calculations/second
 - World's fastest computer

Limitations: Too Much Information

- PSEN1 and PSEN2 mutations account for about 1% of dilated cardiomyopathy patients
- Mutations in these genes can also give you early onset Alzheimer's disease
- Familial testing and questions of parentage

Cardio-Oncology

Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 62, No. 10, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2013.04.088

Heart Failure

Patients With Heart Failure Have an Increased Risk of Incident Cancer

Tal Hasin, MD,^{*†} Yariv Gerber, PHD,^{*‡} Sheila M. McNallan, MPH,^{*} Susan A. Weston, MS,^{*} Sudhir S. Kushwaha, MD,[§] Timothy J. Nelson, MD, PHD,^{||} James R. Cerhan, MD, PHD,^{*} Veronique L. Roger, MD, MPH^{*}[§] *Rochester Minnesota; and Petah Tikva and Tel Aviv, Israel*

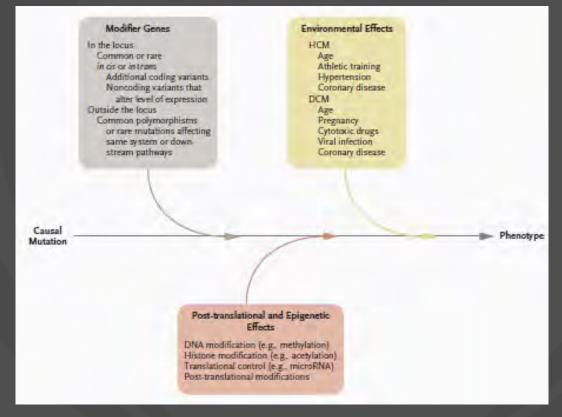
- 9,203 patient years of f/u
- 244 new cancer cases
- Heart failure patients have 68% higher incidence of cancer

Oncogene Variants in Advanced Heart Failure

Damaging oncogene variants are common in the advanced heart failure population

Cancer Gene	Prevalence	Sample – Mutation
NSD1	1/8	Ν
BTK	1/8	F
WRN	2/8	2 NA
MLH1	1/8	D
FANCG	1/8	F
MYH11	1/8	D
NF1	1/8	F
RET	1/8	D
APC	1/8	D
FANCA	1/8	Ν

N – Polymorphism, D – Disease causing, F- Frameshift, NA – No prediction

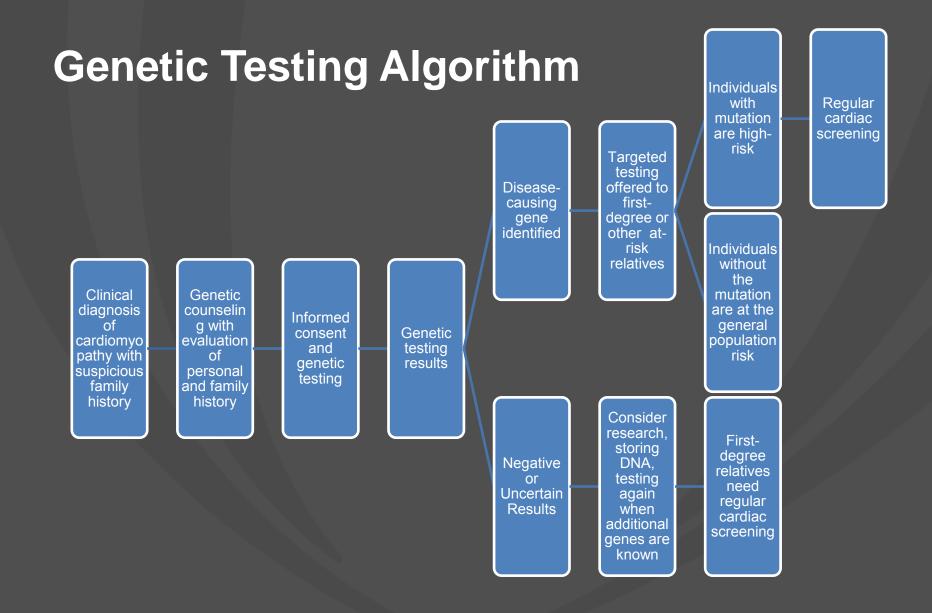

Caballero A et al JCF 2013

Limitation: Phenotypic Variation in Genetic Mutations

KCNJ2	Long QT (LQT7), Andersen-Tawil syndrome, Short QT, CPVT	Dominant
KCNQ1	Long QT (LQT1), Short QT	Dominant
LAMA4	DCM	Dominant (uncertain)
LAMP2	Danon disease*, HCM, DCM	X-linked
LDB3(ZASP)	*DCM, LVNC, HCM, myofibrillar myopathy	Dominant
LMNA	DCM with and without conduction disease*, LVNC, ARVC, myopathies, muscular/lipodystrophies	Dominant
MYBPC3	HCM*, DCM, LVNC	Dominant
MYH6	HCM, DCM, congenital heart defects	Dominant
MYH7	HCM*, DCM, RCM, LVNC, myopathies	Dominant
MYL2	нсм	Dominant
MYL3	нсм	Dominant

Autosomal Dominance & Variable Penetrance

Changes in Gene Expression and Phenotype


Pre-Test Genetic Counseling

• Three generation family history

- Discuss with patient
 - Genes included in test
 - What kind of information we might find
 - Limitations of test
 - Possibility of finding carrier status for recessive conditions
 - Benefit of finding a mutation
 - Risk of finding an uncertain variant
 - Insurance discrimination (health insurance is protected by law, while life insurance, long-term care, etc, is not protected)
- Patient gives informed consent
- Pre-authorization requested from patient's insurer

Post-Test Genetic Counseling

- Discuss results
 - Pathogenic mutation found
 - No mutation found
 - Variant(s) of uncertain clinical significance found
- Follow-up for patient
 - Pathogenic mutation: may offer risk stratification, eligibility for research studies
 - No mutation identified *or* uncertain variant(s) found: return in approximately 1 year to follow-up on variants and determine if new testing is recommended
- Follow-up for family members
 - Pathogenic mutation found: targeted testing available to family members
 - No mutation found: first-degree relatives regular cardiac screening
 - Uncertain variant(s) found:
 - Affected family members: it may be useful to test other *affected* family members to lend strength to whether a variant is tracking with disease in the family
 - Unaffected family members: it is dangerous to test unaffected family members unless it is part of a research protocol, as a normal result would not be informative without knowing a variant is definitely the cause of cardiomyopathy in that family.
- Genetic counseling letter sent to patient explaining the results, risks for family members, follow-up. Cover letter for patient to give family members also provided.

Clinical Pathway

 Table 2
 Clinical family screening indicated in first-degree relatives of a patient with cardiomyopathy (situation in which genetic results are not available within the family)

	нсм	DCM	ARVC	RCM	LVNC
Cardiac evaluation	ECG, echocardiography	ECG, echocardiography (and Holter-ECG if CD in the proband)	ECG, echography, Holter-ECG, signal-averaged ECG	ECG, echocardiography (and Holter-ECG if CD in the proband)	ECG, echocardiography
Start of the cardiac evaluation	10-12 years	Childhood (except laminopathies: 10–12 years)	10-12 years	10-12 years	New-born
Repeated cardiac evaluation	[Every 3–5 years if performed before 10 years]	Every 1–3 years before 10 years ^a	[Every 3–5 years if performed before 10 years] ^b	[Every 3–5 years if performed before 10 years]	Every 1–3 years before 20 years ^{a,c}
	Every 1–2 years between 10 and 20 years	Every 1–2 years between 10 and 20 years ^a	Every 1–2 years between 10 and 20 years	Every 1–2 years between 10 and 20 years	Every 2–5 years after 20 years ^{a,c}
	Every 2–5 years after 20 years	Every 2–5 years after 20 years ^a	Every 2–5 years after 20 years	Every 2–5 years after 20 years	
Screening can be stopped at: ^d	50-60 years	50-60 years	50-60 years	50-60 years	50–60 years ^c

Genetic Pathway

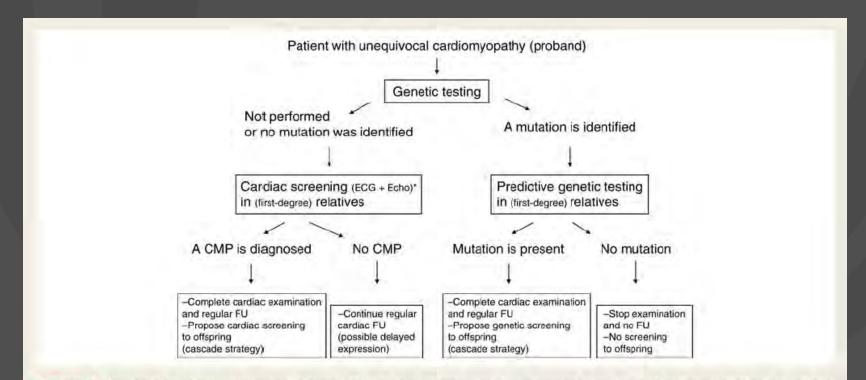
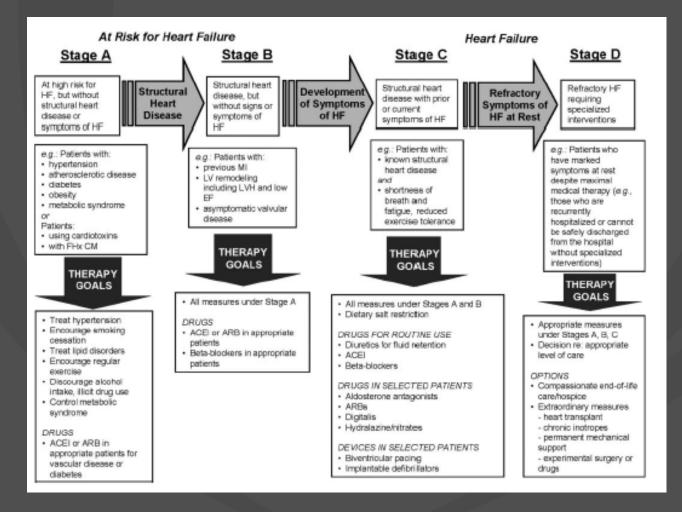


Figure 2 Organization of family screening. Asterisk (*) indicates additional cardiac examination in selected cardiomyopathies (i.e. Holter-ECG, SAECG, MRI, etc.). FU, follow-up.

Outcomes

	If the mutation is present	If the mutation is absent
Positive outcome	Removal of uncertainty	Removal of uncertainty, and relief
	Regular medical follow-up is organized which will improve the prognosis	No future development of the disease, and medical follow-up is no more required No risk of transmission to offspring
Negative outcome	Anxiety because of future cardiac expression (risk of premature death)	Possible 'survivor' guilt
	No treatment to begin at this stage in most disorders	
	Risk of transmission to offspring	
Uncertainties remaining	Recommend environmental modifications? (exercise or alcohol restriction)	Not always easy to affirm that the mutation identified in the proband is the cause of the disorder in the family, especially if missense mutation
	Medical costs?	
	Insurability or professional concerns?	


Medical Therapy is Effective in Asymptomatic LV Dysfunction

• Framingham Study: 40% people with asymptomatic LV dysfunction die within 5 years

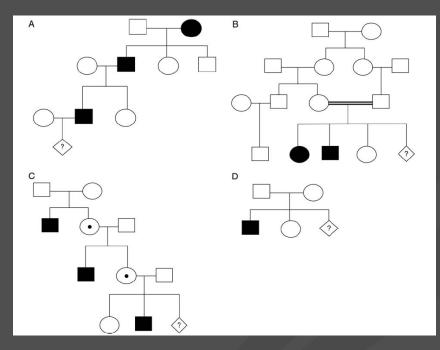
Study	Patient Population (n)	Trestment	Average Dutation, mo	Relative Mortality Risk. Reduction	Sudden Death Risk Reduction	Death Due to Worsening HF Risk Reduction
ACE inhibitors					2011 Co. 10 Co.	
SAVE?!	AMI and asymptomatic LVSD (22/31)	Captopril vs placebo	42	19% (P=0.019)	No difference (P=NS)	30% (P=0.032)
SOLVO Prevention ¹⁷	Asymptomatic LVSD (4228)	Enslapifi vs placebo	37.A	8% (P=NS)	No difference (P=NS)	20%* (P<0.001)
TRACE ^{22,23}	MI and LVSD (8676; 1749 randomized); Asymptomatic LVSD (542)	Trandolapril vs placebo	24-50	22% (P=0.001)	24% (P=0.03)	29%† (P=0.003)
β-Blockers						
Retrospective analysis of SOLVD Prevention**	Asymptomatic LVSD (4228; 1015 patients taking j3-bilockers)	β-Blockers vs no β-blockers plus ensispri	37,4	23% (P<0.01)	28%‡ (P<0.06)	29% (P<0.05)
Post hoc analysis of SAVE ²⁵	Asymptomatic LVSD (2231; 789 patients taking <i>p</i> -blockers)	p-Blockers vs no p-blockers plus captopril	42	43% (P<0.001)	NR	32%† (P<0.001)
NUZZ	HF (415); asymptomatic LVSD (124)	Carvediki vs placebo	19	36%* (P=0.02)	10% (P=NS)	8% (P=NS)
CAPRICORN ²⁷	Post-AMI LVSD (1959); asymptomatic LVSD (1023)	Carvediki vs placebo (Including ACE Inhibitor)	15.6	23% (P=0.03)	26% (P=0.098)	40% (P=0.083)

Goldberg et al Circulation 2013

AHA/ACC Guidelines

Ethical Principles

Table 4Main principles of genetic counselling whengenetic testing is discussed (especially predictivetesting). Adapted from Cassiman.


Autonomy: decision to make genetic testing is solely the choice of the counsellee. No pressure can be put on the counsellee and every decision should be equally accepted

Non-directiveness: information should be appropriate and honest Written informed consent: must be provided before blood sampling Right to know and not to know the genetic result: both should be respected

Confidentiality: should be respected so that the counsellee cannot be discriminated against in any way

Genetic Counseling Guidelines

- "A careful family history for ≥ 3 generations is recommended for all patients with cardiomyopathy"
- "Genetic and family counseling is recommended for all patients and families with cardiomyopathy"

Hershberger et al JCF 2009

Genetic Testing Guidelines

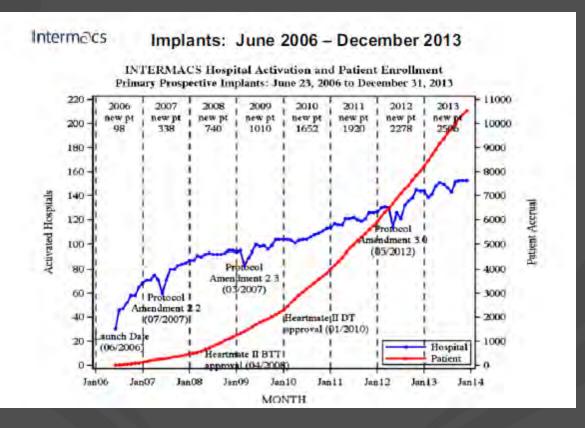
17.4. Genetic testing should be considered for the one most clearly affected person in a family to facilitate family screening and management.

a. Cardiomyopathy phenotype

Cardiomyopathy Phenotype	Level of Evidence
Hypertrophic cardiomyopathy (HCM)	А
Dilated cardiomyopathy (DCM)	В
Arrhythmogenic right ventricular dysplasia (ARVD)	A
Left ventricular noncompaction (LVNC)	С
Restrictive cardiomyopathy (RCM)	С
Cardiomyopathies associated with other extracardiac manifestations	А

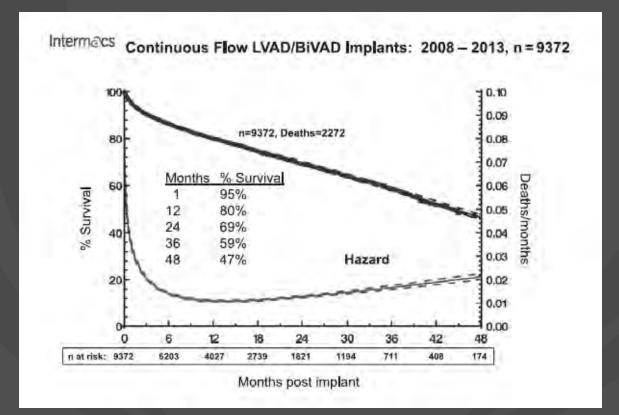
Hershberger et al JCF 2009

Clinical Screening Guidelines

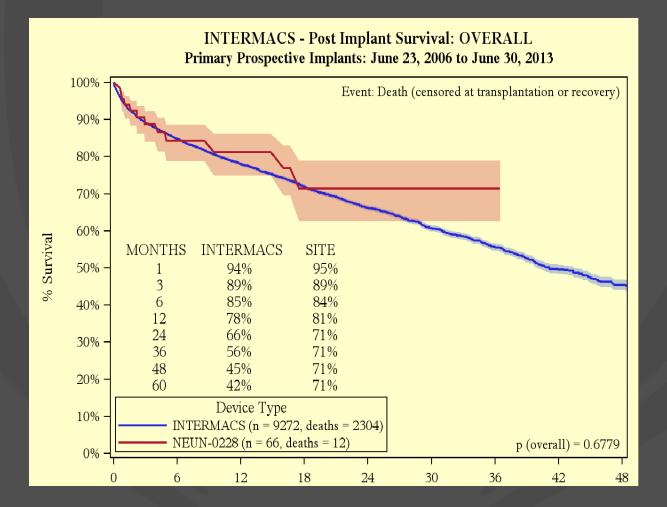

17.2. Clinical screening for cardiomyopathy in asymptomatic first-degree relatives is recommended.

a. Cardiomyopathy Phenotype	Level of Evidence
Hypertrophic cardiomyopathy (HCM)	Α
Dilated cardiomyopathy (DCM)	A
Arrhythmogenic right ventricular dysplasia (ARVD)	A
Left ventricular noncompaction (LVNC)	В
Restrictive cardiomyopathy (RCM)	В
Cardiomyopathies associated with extracardiac manifestations (Table 4)	Α

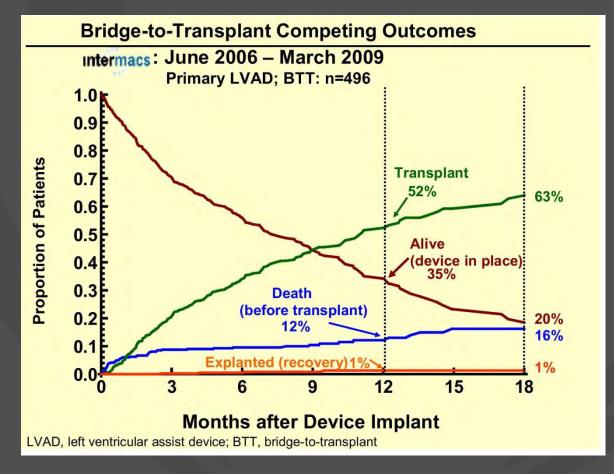
Hershberger et al JCF 2009

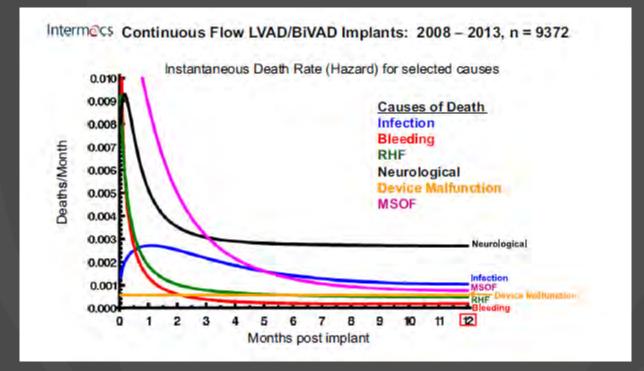

Cardiomyopathy Phenotype	Interval if genetic testing is negative and/or if clinical family screening is negative	Screening interval if a mutation is present	Level of Evidence	
Hypertrophic	Every 3 years until 30 years of age, except yearly during puberty; after 30 years, if symptoms develop	Every 3 years until 30 years of age, except yearly during puberty; every 5 years thereafter.	В	
Dilated	Every 3-5 years beginning in childhood	Yearly in childhood; every 1–3 years in adults.	В	
ARVD/C	Every 3–5 years after age 10	Yearly after age 10 to 50 years of age.	С	
LVNC	Every 3 years beginning in childhood	Yearly in childhood; every 1–3 years in adults.	С	
Restrictive	Every 3–5 years beginning in adulthood	Yearly in childhood; every 1–3 years in adults.	С	

LVAD Volumes are Growing

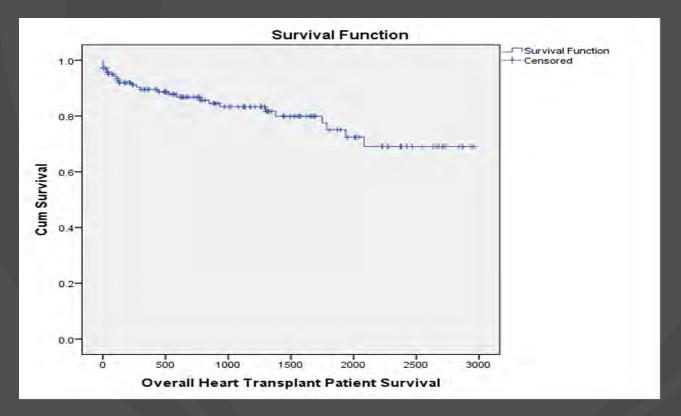


Kirklin et al JHLT 2014

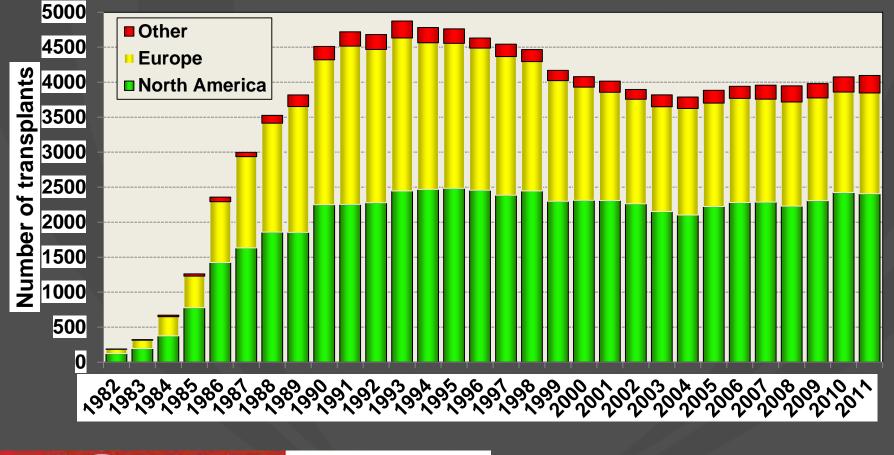

LVAD Survival



VAD Survival



Background: Recovery is Rare


The Overall Heart Transplant Recipient Survival The period: 09/29/2005 through 10/30/2013 The follow-up stop time: 11/04/2013

Case Processing Summary			
Total N	N of Events	Censored	
		Ν	Percent
142	26	116	81.7%

Adult and Pediatric Heart Transplants Number of Transplants by Year and Location

ISHLT . INTERNATIONAL SOCIETY FOR HEART AND LUNG TRANSPLANTATION

Summary

- Many "cardiomyopathies" are genetic
- Broad genetic testing is widely available and applicable to these patients
- Genetic counseling should be done for patients and their families
- We need to identify patients who are at risk and target them for early interventions

