Applying Genomics in Transplantation

Brendan Keating D.Phil. Division of Transplantation, Department of Surgery University of Pennsylvania

Optum Health Education 29th Annual National Conference

Disclosures

Consultant for UnitedHealthGroup R&D

Funding: U01 AI152960 NIH/NIAID Keating (PI) MHC & KIR Sequencing & Association Analyses in iGeneTRAIN Keating (PI) R01 AI144522 NIH/NIAID Multi-omic Biomarker Discovery & Validation in Heart Transplant Patients R01 HD091185 NIH/NICHD Keating (MPI) Validating Injury to the Renal Transplant Using Urinary Signatures in Children **Biesecker Foundation** Keating (PI) Diagnoses and Prognostication of Rejection in Liver Transplant patients

Presentation Overview

DNA biomarkers in Transplant

- International Genetics & Translational Research in Tx Network (iGeneTRAiN)
 - Histocompatibility screening (HLA/non-HLA compatibility)
 - Pharmacogenomics (PGx)
 - Primary disease diagnoses
 - iGeneTRAiN-Industry studies

Integrating DNA, RNA, proteomics & metabolomics

• Kidney, Liver & Heart transplant multi-omics studies

Eric Green et al. Nature 470, 2011

nature

Construction of Human Genome-wide Genetic Maps

6

Human1M-Duo

www.hapmap.org

Genome-wide Association Studies : Basic Principles

Family-based or case/control DNA samples

Whole genome genotyping

Genome-wide Association studies (GWAS)

Replication & Fine mapping

Manhattan plots of association of tacrolimus dose normalized blood trough levels (n \sim 1500 Caucasians)

DeKAF Genomics

Interaction of risk variants for Age-related Macular Degeneration

Seddon et al 2008

>5,000 Published GWAS through 2015, at $p \le 5x10^{-8}$ for >1,000 traits

NHGRI/EBI GWA Catalog www.genome.gov/GWAStudies

Exome sequencing workflow

- 1. Fragmentation and library preparation
- 2. Hybridization to exonic regions (regions in exome capture array)
- 3. Magnetic pull down and wash excess fragments
- 4. Sequencing (paired-end)

Whole Exome Sequencing Discoveries

ORIGINAL ARTICLE

A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease

- Whole Exome Seq & EHR from 46,500 Geisinger patients were mined for associations with various lab values
- HSD17B13 Loss-of-Function mutations associate with ALT & AST levels
- Associated with lower:
 - Alcoholic Liver disease (42% & 53% for 1 & 2 copies)
 - NAFLD (17% & 30% for 1 & 2 copies)
 - Progression from Steatosis to Steatohepatitis

N Engl J Med. 2018 PMID: 29562163

Whole Exome Sequencing Discoveries

ORIGINAL ARTICLE

A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease

- Whole Exome Seq & EHR from 46,500 Geisinger patients were mined for associations with various lab values
- HSD17B13 Loss-of-Function mutations associate with ALT & AST levels
- Associated with lower:
 - Alcoholic Liver disease (42% & 53% for 1 & 2 copies)
 - NAFLD (17% & 30% for 1 & 2 copies)
 - Progression from Steatosis to Steatohepatitis

HSD17B13 is druggable with using antibodies

N Engl J Med. 2018 PMID: 29562163

Genome-wide Statistical Power for Detecting Main Effects

Power calculation based on *n* unrelated cases & controls. Disease model is multiplicative with disease minor allele frequencies (MAFs) of 0.05, 0.1 & 0.2 & OR of 1.2, 1.4 & 1.6. Significance assessed at 5% level using Bonferroni correction <u>assuming ~500K tests</u>

(Keating et al 2008: PMID: 18974833)

*i*GeneTRA*i*N Kidney Groups

	Kidney Groups	Recipients (n)	Donors (n)	Study Sites
0	Go-CAR	588	588	5
0	TRANSPLANT-LINES	1098	1098	1
0	Vanderbilt BioVU	1091	0	1
	Children's Hospital of Philadelphia-Kidney Tx	201	173	1
	Univ of Pennsylvania-Kidney Tx	1020	933	1
0	WTCCC-3	2755	2721	10
•	GEN-03 DeKAF Genomics	2783	1392	7
0	СТОТ-3	1193	597	3
0	Scripps, CA	1570	1270	1
	Swiss Transplant Cohort Study	1850	0	6
0	Saudi Arabia Kidney Tx study	283	0	1
D	Colombia, NYC	2050	300	1
0	Medical University of Vienna	921	900	1
0	Leiden University Medical Center	320	320	1

	、見てい	
Kidney GroupsStudy SitesGo-CAR5TRANSPLANT-LINES1Vanderbilt BioVU1Children's Hospital of Philadelphia-Kidney Tx1Univ of Pennsylvania-Kidney Tx1WTCCC-323GenO3 and DeKAF genomics7CTOT-33Scripps, CA1Swiss Transplant Cohort Study6Saudi Arabia Kidney Tx study2Columbia University, NYC1Medical University of Vienna1Leiden University Medical Center1BioMARGIN4Rotterdam1South Korea7Torino Italy1		1 March

*i*GeneTRA*i*N Liver Groups

	Liver Groups	Recipients	Donors St	udy Site
	A2ALL	711	421	4
	AWISH	245	243	8
1	Baylor-Liver Tx	1001	999	1
۲	Children's Hospital of Philadelphia-Liver Tx	179	99	1
0	СТОТ-3	87	86	3
0	Saudi Liver Transplant	295	291	1
۲	Univ of Pennsylvania-Liver Tx	796	756	1

iGeneTRAiN Liver Groups

iGeneTRAiN Heart Groups

	Heart Groups	Recipients	Donors SI	onors Study Sites	
۰	Children's Hospital of Philadelphia-Heart Tx	69	69	1	
•	CTOT-3	52	46	2	
۰	CTOT-5	102	102	10	
0	Intermountain Utah	320	0	1	
•	Madrid Heart Tx Study	191	185	1	
	Rotterdam heart tx	324	275	1	
•	Stanford/LPCH	137	137	1	
•	Univ of Pennsylvania-Heart Tx	354	354	1	
	Utrecht Heart Tx study	178	178	1	
۲	Vanderbilt BioVU	184	0	1	

stere .

*i*GeneTRA*i*N Lung Groups

	Lung Groups	Recipients Donors Study Sites				
۲	СТОТ-3	106	106	3		
0	Lung Transplant Outcomes Group	2548	1780	8		
	USCF	360	360	1		
0	Utrecht Lung Tx study	151	150	1		

and the second

International Genetics & Translational Research in Transplantation Network (iGeneTRAiN)

Stage 1

- Heart, Kidney, Liver, Lung & Stem-Cell Tx groups
 - n > 51,000 GWAS'd (most using Tx specific array with 780,000 variants)
 - Core pipelines for genome-wide and HLA & KIR imputation

www.igenetrain.org + Keating et al. PMID: 26479416 Transplantation Nov 2015

International Genetics & Translational Research in Transplantation Network (iGeneTRAiN)

Stage 1

- Heart, Kidney, Liver, Lung & Stem-Cell Tx groups
 - n > 51,000 GWAS'd (most using Tx specific array with 780,000 variants)
 - Core pipelines for genome-wide and HLA & KIR imputation
- Harmonize existing phenotypes, GWAS & whole exome seq datasets
 - mHA/Loss-of-function pipelines
- Meta-analyses within organ & cross solid-organ for:
 - Acute rejection, graft/patient survival, NODAT, skin cancer, PGx outcomes

www.igenetrain.org + Keating et al. PMID: 26479416 Transplantation Nov 2015

International Genetics & Translational Research in Transplantation Network (iGeneTRAiN)

Stage 1

- Heart, Kidney, Liver, Lung & Stem-Cell Tx groups
 - n > 51,000 GWAS'd (most using Tx specific array with 780,000 variants)
 - Core pipelines for genome-wide and HLA & KIR imputation
- Harmonize existing phenotypes, GWAS & whole exome seq datasets
 - mHA/Loss-of-function pipelines
- Meta-analyses within organ & cross solid-organ for:
 - Acute rejection, graft/patient survival, NODAT, skin cancer, PGx outcomes
- Stage 2
 - Standardization & harmonization of biopsies/bio-specimens/biomarkers across studies

www.igenetrain.org + Keating et al. PMID: 26479416 Transplantation Nov 2015

Approved Studies

Protocol	Study Status	Title	Principal Investigator
<u>CTOT-01</u>	Closed	Noninvasive Monitoring to Predict Outcome in de novo Kidney Transplant Recipients	Peter Heeger, MD
<u>СТОТ-</u> 02/ССТРТ- 02	Closed	B-Cell Depletion by Anti-CD20 in Renal Allograft Recipients who Develop de novo Anti HLA Alloantibodies	Mohamed Sayegh, MD and Anil Chandraker, ਅਰੋ
<u>CTOT-03</u>	Closed	Correlation of Donor Proinflammatory mRNA Profiles with Early Outcomes of Thoracic and Abdominal Transplantation	Abraham Shaked, MD
<u>CTOT-04</u>	Closed	Noninvasive Diagnosis of Renal Allograft Rejection by Urinary Cell mRNA Profiling	Abraham Shaked, MD
<u>CTOT-05</u>	Closed	Observational Study of Alloimmunity in Cardiac Transplant Recipients	Peter Heeger, MD; Mohamed Sayegh, MD; and Anil Chandraker, MD
СТОТ-06	Closed	A Mechanistic Substudy of the Bristol-Myers Squibb Sponsored Trial "Belatacept Conversion Trial in Renal Transplantation	Mohamed Sayegh, MD
<u>СТОТ-07</u>	Closed	Development of Genomic Signatures for the Prediction, Diagnosis and Prognostication of Liver Allograft Rejection and recurrent Hepatitis C Disease	Abraham Shaked, MD, PhD

Ovation: HIPAA Compliant-Environment for genomic pipelines/analyses

1,400,000,000,000 Genotypes (direct & imputed)

Published/Ongoing iGeneTRAiN GWAS analyses

- Kidney Primary Association analyses
 - Rejection, graft survival (time to event/ rejection Y/N)
 - Phase 1: DeKAF, TxLINES, Vanderbilt, UKIRTC, Leiden, Scripps, Vienna
 - Phase 2: Phase 1 + UPenn, Columbia, BioMARGIN, STCS, S.Korea

Published/Ongoing iGeneTRAiN GWAS analyses

- Kidney Primary Association analyses
 - Rejection, graft survival (time to event/ rejection Y/N)
 - Phase 1: DeKAF, TxLINES, Vanderbilt, UKIRTC, Leiden, Scripps, Vienna
 - Phase 2: Phase 1 + UPenn, Columbia, BioMARGIN, STCS, S.Korea
- Heart Transplant Studies used:
 - UPenn, CTOT-05, Stanford/LP, Madrid, Rotterdam, Utrecht
 - Primary Phenotypes: BPR in year 1 (Grade 2R & clinically treated)
 - Death/Graft Loss (which ever occurred first)
 - Meta-analyses performed using standard GWAS models
 - Covariates: D-R age & gender, Year of Tx, PCs

iGeneTRAiN Heart donor-recipient pairs: Time-to-Rejection

Top Heart GWAS Signal ($p < 1 \times 10^{-9}$)

- Vascular adhesion molecule:
 - Gene expression ubiquitous including heart
 - Role in late leukocyte extravasation to overcome endothelial B Membrane
 - Potentially plays an important role in graft rejection (PMID:1384180)
 - Not druggable, but it is a possible biopharmaceutical target

Analysis pipeline: Loss-of-Function mutations

- Step 1: Identify Loss-of-Function mutations on a genome-wide scale
- Step 2: Calculate for each individual which genes are inactive in 1 or 2 copies
- Step 3: Identify genes that are inactive in the recipient but active in the donor

Analysis pipeline: Loss-of-Function mutations

- Step 1: Identify Loss-of-Function mutations on a genome-wide scale
- Step 2: Calculate for each individual which genes are inactive in 1 or 2 copies
- Step 3: Identify genes that are inactive in the recipient but active in the donor

Assessing inactive genes in recipients but active in donors

	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6	Gene 7	Gene 	Gene 21,000
Donor 1	0	0	0	0	0	0	1	0	0
Recipient 1	0	1	0	0	0	0	0	0	0
Donor 2	0	0	0	0	0	0	0	0	0
Recipient 2	0	0	0	2	0	0	1	0	0
Donor 3	0	0	0	0	0	0	0	0	0
Recipient 3	0	0	0	0	0	1	0	0	0
Donor	0	2	0	0	0	0	0	0	0
Recipient	0	0	0	0	0	0	0	1	0
Donor 888	0	0	0	1	0	0	0	0	0
Recipient 888	0	0	0	0	0	0	2	0	0

Assessing inactive genes in recipients but active in donors

	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6	Gene 7	Gene	Gene 20,000
Donor 1	0	0	0	0	0	0	1	0	0
Recipient 1	0	1	0	0	0	0	0	0	0
Donor 2	0	0	0	0	0	0	0	0	0
Recipient 2	0	0	0	2	0	0	1	0	0
Donor 3	0	0	0	0	0	0	0	0	0
Recipient 3	0	0	0	0	0	1	0	0	0
Donor	0	2	0	0	0	0	0	0	0
Recipient	0	0	0	0	0	0	Q	1	0
Donor 888	0	0	0	1	0	0	0	0	0
Recipient 888	0	0	0	0	0	0	2	0	0

Roche NimbleGen Tx Peptide Array v1

- Utilize 20+ amino acids with linker on surface
- In-situ synthesis creates
 12-16-mer peptides
- Synthesize up to 2.9M unique peptides per array
- Enables full proteome scale single array analyses

Reactivity to peptides for EBNA-1 protein

Published/Ongoing iGeneTRAiN GWAS analyses

- Primary Association analyses
 - Rejection, graft survival/death (time to event/ rejection Y/N)
 - KIDNEY, HEART, LIVER individual studies \rightarrow CROSS ORGAN META-ANALYSES
 - Allogenicity/graft outcomes (Lancet Feb 2019, NEJM May 2019)

Primary Association analyses

- Rejection, graft survival/death (time to event/ rejection Y/N)
 - KIDNEY, HEART, LIVER individual studies \rightarrow CROSS ORGAN META-ANALYSES
- Allogenicity/graft outcomes (Lancet Feb 2019, NEJM May 2019)

Lancet Feb 2019

- Genome-wide mismatches in 59,268 nsSNPs in transmembrane proteins
 - 477 kidney tx recipient-donor pairs
- mismatches associated with graft loss in multivariable model
 - adjusted for HLA eplet mismatch (HLA-A,-B, -C, -DP, -DQ & -DR)
- 5-year death censored graft survival:
 - 98% in 1st quartile (lowest mismatch)
 - 91% in 2nd quartile
 - 89% in 3rd quartile
 - 82% in 4^{th} quartile (p=0.003, log-rank test).

Primary Association analyses

- Rejection, graft survival/death (time to event/ rejection Y/N)
 - KIDNEY, HEART, LIVER individual studies \rightarrow CROSS ORGAN META-ANALYSES
- Allogenicity/graft outcomes (Lancet Feb 2019, NEJM May 2019)

Lancet Feb 2019

- Genome-wide mismatches in 59,268 nsSNPs in transmembrane proteins
 - 477 kidney tx recipient-donor pairs

KM plot of renal allograft survival quintile- stratified for coding mismatch nsSNPs in kidney transmembrane & secreted proteins

Ab's against mismatched epitopes in patients sera with bx-confirmed rejection

Primary Association analyses

- Rejection, graft survival/death (time to event/ rejection Y/N)
 - KIDNEY, HEART, LIVER individual studies \rightarrow CROSS ORGAN META-ANALYSES
- Allogenicity/graft outcomes (Lancet Feb 2019, NEJM May 2019)

NEJM May 2019

- Significant association with allograft rejection discovered in LIMS1 region
 rs893403 HR 1.84; 95%CI, 1.35-2.50; P=9.8×10⁻⁵
- Replicated under D-R model in 3 independent cohorts (2,004 D-R pairs)
 - HR, 1.55; 95% CI, 1.25-1.93; *P*=6.5 × 10⁻⁵
- Combined analysis risk genotype was associated with rejection
 - (**HR**, **1.63**; 95% CI, 1.37-1.95; $P = 4.7 \times 10^{-8}$) with alloantibodies evident

- Primary Association analyses
 - Rejection, graft survival/death (time to event/ rejection Y/N)
 - KIDNEY, HEART, LIVER individual studies \rightarrow CROSS ORGAN META-ANALYSES
 - Allogenicity/graft outcomes (Lancet Feb 2019, NEJM May 2019)
- Other post-tx phenotypes
 - Decline eGFR over 5 years (donor & recipient genotypes) (AJT 2019)
 - DILI, Nephrotoxicity, Early graft dysfunction (AJT 2019)
 - HCC development (in preparation)
 - Polygenic risk score for non-melanoma skin cancer risk (AJT 2019)
 - New onset of Diabetes after transplant (NODAT) (in preparation)
 - Genetics of Tacrolimus Trough levels and Metabolism (AJT 2019)

- Primary Association analyses
 - Rejection, graft survival/death (time to event/ rejection Y/N)
 - KIDNEY, HEART, LIVER individual studies \rightarrow CROSS ORGAN META-ANALYSES
 - Allogenicity/graft outcomes (Lancet Feb 2019, NEJM May 2019)
- Other post-tx phenotypes

Donor-Recipient interaction analyses

- Loss-of-Function (LoF) pipeline
 - e.g. stop-gained, splice-disrupting, or frame-shift mutations)
- HLA, KIR focused analyses:
 - Amino acid imputation (using SNP2HLA, HLA*IMP & KIR*IMP)
 - D-R interaction models: Eplet, PIRCHE-II, SFVT

Primary Disease; Nephronophthisis (JASN 2018)

- Nephronophthisis, medullary cystic kidney disease: most common genetic disorder causing pediatric ESRD
- Often caused by homozygous NPHP1 full gene deletions
 - Autosomal recessive inheritance

- Nephronophthisis, medullary cystic kidney disease: most common genetic disorder causing pediatric ESRD
- Often caused by homozygous NPHP1 full gene deletions
 - Autosomal recessive inheritance

- Nephronophthisis, medullary cystic kidney disease: most common genetic disorder causing pediatric ESRD
- Often caused by homozygous NPHP1 full gene deletions
 - Autosomal recessive inheritance
- NPHP1 CNVs examined in 4 studies (>5,600 cases) with adult-onset ESRD

- Nephronophthisis, medullary cystic kidney disease: most common genetic disorder causing pediatric ESRD
- Often caused by homozygous NPHP1 full gene deletions
 - Autosomal recessive inheritance

NPHP1 CNVs examined in 4 studies (>5,600 cases) with adult-onset ESRD

Diagnoses prior to Transplant

- Nephronophthisis, medullary cystic kidney disease: most common genetic disorder causing pediatric ESRD
- Often caused by homozygous NPHP1 full gene deletions
 - Autosomal recessive inheritance

NPHP1 CNVs examined in 4 studies (>5,600 cases) with adult-onset ESRD

JASN 2018 PMID: 29654215

Using Whole Exome Sequencing (WES) to diagnoses CKDs

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Diagnostic Utility of Exome Sequencing for Kidney Disease

Assessed diagnostic yield of WES in >3315 CKD patients

- Diagnostic variants found in 307 patients (9.3%)
- Encompasses 66 different monogenic disorders
- Diagnostic variants detected across all clinical categories
 - e.g. congenital or cystic renal disease: 127 of 531 patients (23.9%)
 - Nephropathy of unknown origin: 48 of 281 patients (17.1%)
- > 34 of 2187 patients had actionable findings for medical disorders
 - Led to additional referrals & leading to more informed renal management

NEJM 2019 PMID: 30586318

"Trial & error" prescribing --> highly variable outcomes

Adverse drug reactions are deadly/costly

patients on 5+ meds, will double by 2040

Sources: U.S. Census, Annals of Pharmacotherapy 2018, Vol. 52(9) 829-837,

Drug failure/poor efficacy is common

48%

50%

FDA. Paving the way for personalized medicine

Pharmacogenomics Payer Collaboration

What is CPIC?

The <u>Clinical Pharmacogenetics Implementation Consortium (CPIC®)</u> is an international consortium of individual volunteers and a small dedicated staff who are interested in facilitating use of pharmacogenetic tests for patient care.

One barrier to implementation of pharmacogenetic testing in the clinic is the difficulty in translating genetic laboratory test results into actionable prescribing decisions for affected drugs.

Table 1	۱.	Commonly	used	drugs in	n	transplantation	and	their	pharmacogenes	of	importance.
---------	----	----------	------	----------	---	-----------------	-----	-------	---------------	----	-------------

Drug class(es)	Drug	Gene(s)	FDA Label for PGx testing	PharmGKB level of evidence	CPIC level (s)	
Immunosuppression	Azat loprine	TPMT, NUDT15	Testing recommended (TPMT)	1A, 1B	A, A/B	1
	Cyclophosphamide	TP53, SOD2, GSTP1, MTHFR		2B, 2B, 2A, 2A	D, D, C/D, C	
	Cyclosporine	CYP3A4/CYP3A5		2B	C	
	Mercaptopurine	TPMT, NUDT15	Testing recommended (TPMT)	1A, 1B	A, A/B	
	Methotrexate	MTRR, ATIC, ABCB1, SLCO1B1, MTHFR		2B, 2B, 2A, 2A, 2A, 2A	D, D, C/D, C, C	
	Mycophenolic acid	HPRT1	Actionable PGx	0.000	В	
	Sirolimus	СҮРЗА5		2A	C	
	Tacrolimus	CYP3A4/CYP3A5		2A, 1A	C, A	
Statins	Atorva tatin	LDLR, KIF6, COQ2, APOE	Actionable PGx (LDLR)	-, 2B, 2B, 2A	D, D, D, C	
	Cerivastatin	SLCO1B1		2A	В	
	Pravastatin	KIF6, SLCO1B1		2B, 2A	D, C	
	Simvastatin	ABCB1, SLCO1B1		2A, 1A	C/D, A	
Anti-Diabetic	wittformin	SLC47A2, C11orf65		2B, 2B	D, D	
Anti-arrhythmic	Prop Jenone	CYP2D6	Actionable PGx	2A	C	
Anti-hypertensive	A.e Inhibitors	KCNIP4, ACE		2A	D	
	Digoxin	ABCB1		2A	C/D	

Keating B. et al Transplantation 2018

Table 1. Commonly used drugs in transplantation and their pharmacogenes of importance.

				PharmGKB level	
Drug class(es)	Drug	Gene(s)	FDA Label for PGx testing	of evidence	CPIC level (s)
Anti-hypertensive/ Beta blocker	Propranolol	CYP2D6	Informative PGx	4	С
Diuretic	Spironola tone	ADD1		2B	D
Blood thinner	Acencioumarol	CYP4F2, CYP2C9		2B, 2A	B, B
	Aspirin	PTGS1, LTC4S, GP1BA, HLA-DPB1		28, 28, 28, 28	D, D, D, C
	Clopidogrel	CYP2C19, CES1	Actionable PGx (CYP2C19)	1A, 2B	A, C/D
	Phenprocoumon	CYP4F2		2A	В
	Warfarin	PROS1, PROC, VKORC1, CYP2C9, GGCX, CALU, CYP4F2	Actionable PGx (PROS1, PROC, VKORC1, CYP2C9)	-, -, 1A, 1A, 2B, 2B, 1B, 2B	D, D, A, A, D, D, A
Osteoporosis	Biohosphonates	FDPS		2B	D
Antibiotic	Muldixic acid	G6PD	Actionable PGx		В
	Nitrofurantoin	G6PD	Actionable PGx	3	В
	Norfloxacin	G6PD	Actionable PGx		В
	Sulfadiazine	G6PD	Actionable PGx		В

Keating B. et al Transplantation 2018

Table 1. Continued.

Drug class(es)	Drug	Gene(s)	FDA Label for PGx testing	PharmGKB level of evidence	CPIC level (s)
Anti-Viral	A Jacavir	HLA-B	Testing required	1A	A
	Atazanavir	CYP3A5, UGT1A1		2B, 1A	C, A
	Interferon alta-2b	ITPA		28	C/D
	Peginterferon alfa-2a	IFNL4, IFNL3		1A, 1A	D, A
	Peginterferon alfa-2b	IFNL4, IFNL3, VDR	Actionable PGx (IFNL3)	1A, 1A, 2A	D, A, D
	Ribavirin	VDR, IFNL3	24096968 (IFNL3)	2A, 1A	D, A
	Tenofovir	ABCC4		28	D
Chemotherapy (skin cancer)	Fluorouracil	DPYD, UMPS, TYMS, NQO1, GSTP1, MTHFR	Actionable PGx (DPYD)	1A, 2B, 2A, 2A, 2A, 3	A, D, D, D, C/D, C
Chemotherapy (other)	Anthracycline	CBR3, SLC28A3, NQO1, HAS3		2B, 2B, 2A, 2B	D, D, D, D
	Belinostat	UGT1A1	Actionable PGx	3	В
	Cisplatin	TP53, TMEM43, GSTM1, COMT, XPC		2B, -, 2B, 3, 1B	D, D, D, C/D, D
	Irinotecan	UGT1A1, SEMA3C, C8orf34	Actionable PGx (UGT1A1)	2A, 2B, 2B	A, D, D
	Nilotinib	UGT1A1	Actionable PGx	3	C
	Sunitinib	ABCB1		2B	C/D

The major classes of drugs prescribed to patients post-transplantation are shown along with specific drugs and the genes of known interaction

Keating B. et al Transplantation 2018

eMERGE Phase III Members

Embedding of CLIA genotyping into EMR's & applying to real-life patients

Lock Logout Patient search:	Test User belli5j (Beller, Marc) [inttest] Pt.Chart ADVANCE StNotes Forms Rx ProvCom Panels Pt.Lists TaskList MsgBskts W	hBoards Nev	wRes SignDrafts M
Help + Clear all Favorites + StarPager	Drug-Genome Advisor Intermediate Metabolizer - clopidogrel (Plavix) Substitution recommended due to increased cardiovascular risks		
Consults ED D/C App Inpt. census OR Cases Outpt. visits Patients View Panels	If not otherwise contraindicated: Prescribe prasugrel (Effient) 10 mg daily Contraindications include: • history of stroke or transient ischemic attack • >= 75 years of age [Current patient age: 66] • body weight < 60 kg [Current patient weight: 90.0 kg as of 1/24/2013]		
PREDICT Test Patients SPQR12 Recent pts. Scratch cens. StarTracker	 Prescribe ticagrelor (Brilinta) 90 mg twice daily Contraindications include: history of severe hepatic impairment history of intracranial bleed 		
StarVisit Deshboerde > Work Lists >	Continue with clopidogrel (Plavix) prescription	Ţ	Evidence Link

This patient has been tested for CYP2C19 variants which has identified the presence of one copy of a risk allele which is associated with intermediate metabolism of clopidogrel. Intermediate metabolizers treated with clopidogrel at normal doses are associated with higher rates of stent thrombosis and other cardiovascular events. The Vanderbilt P&T Committee recommends that prasugrel or ticagelor replace clopidogrel for poor metabolizers unless contraindicated. If not feasible, maintain standard dose of clopidogrel. The guidelines above were developed based on the outcome studies of patients who received a drug-eluting stent into a coronary artery.

Cancel

Embedding of CLIA genotyping into EMR's & applying to real-life patients

Lock Logout Patient search:	Test User belll5j (Beller, Marc) [inttest] Pt.Chart ADVANCE StNotes Forms Rx ProvCom Panels Pt.Lists TaskList MsgBskts With the start of	hBoards Nev	vRes SignDrafts I
Help Help Help Help Help Help Help Help	Drug-Genome Advisor Intermediate Metabolizer - clopidogrel (Plavix) Substitution recommended due to increased cardiovascular risks		
Consults ED D/C App Inpt. census OR Cases Outpt. visits PatientsView Panels	If not otherwise contraindicated: Prescribe prasugrel (Effient) 10 mg daily Contraindications include: • history of stroke or transient ischemic attack • >= 75 years of age [Current patient age: 66] • body weight < 60 kg [Current patient weight: 90.0 kg as of 1/24/2013]		
PREDICT Test Patients SPQR12 Recent pts. Scratch cens. StarTracker StarVisit Unstitutes	 Prescribe ticagrelor (Brilinta) 90 mg twice daily Contraindications include: history of severe hepatic impairment history of intracranial bleed Continue with clopidogrel (Plavix) prescription 	I	Evidence Link

This patient has been tested for CYP2C19 variants which has identified the presence of one copy of a risk allele is associated with intermediate metabolism of clopidogrel. Intermediate metabolizers treated with clopidogrel at normal doses are associated with higher rates of stent thrombosis and other cardiovascular events. The Vandert

Cancel

Continue

the outcome studies of patients who received a drug-eluting stent into a coronary artery.

Industry/Academia Biomarker Collaborations

- Genome-wide Studies to discover gene knock-out effect and/or targets for common & rare disease.
- Pharma Whole-exome sequencing studies using Large Biobanks
 - UK BioBank > 500,000 WES underway
 - Geisinger Health System >200,000 WES completed to date
 - Mayo Clinic recent agreement for > 100,000 WES
 - Penn Biobank/Penn DNAs 160,000 WES
 - Genomics England 100,000 Whole Genome Seq
 - Rare Disease studies
 - Numerous Pediatric Hospitals
 - NIH Undiagnosed Diseases Program, NIAID, NIDDK

Industry/Academia Biomarker Collaborations

- Genome-wide Studies to discover gene knock-out effect and/or targets for common & rare disease.
- Pharma Whole-exome sequencing studies using Large Biobanks
 - UK BioBank > 500,000 WES underway
 - Geisinger Health System >200,000 WES completed to date
 - Mayo Clinic recent agreement for > 100,000 WES
 - Penn Biobank/Penn DNAs 160,000 WES
 - Genomics England 100,000 Whole Genome Seq
 - Rare Disease studies
 - Numerous Pediatric Hospitals
 - NIH Undiagnosed Diseases Program, NIAID, NIDDK
- iGeneTRAiN
 - Over 2,000 Penn Tx samples subjected to WES to date
 - HLA Sequencing of key Class I & II loci in > 700 patients to date
 - Scaling up to 45,000 samples (GWAS, WES & HLA Class I/II regions)

Biomarkers for diagnoses & prognostication of post-transplant outcomes

Urinary mRNA prediction of Acute Rejection in Kidney Tx

Gold standard for diagnosing rejection in kidney is still needle biopsy

- Complications: procedural errors, inter-observational variability, bleeding
- Biopsies are typically 'for cause': graft damage may already have occurred

NIH Clinical Trials in Organ Transplantation (CTOT) 04 study

- Assessed if mRNA urinary profiles were predictive of acute rejection
- n=485 kidney tx recipients recruited in multicenter observational clinical study
- > 10 Urines collected in 1st year for diagnostic prediction of acute rejection

Urinary mRNA prediction of Acute Rejection in Kidney Tx

Gold standard for diagnosing rejection in kidney is still needle biopsy

CD3ε & CXCL10 mRNAs discriminated rejection vs non-rejection
 AUC, 0.85; 95% CI: 0.78-0.91; P<0.001 by ROC curve analysis

60

Blue: n= 38 patients with 1st biopsy showing ACR (201 urine samples) Orange: n=113 patients showing no rejection (833 urine samples)

Bridging Pediatric & Adult Therapeutics: VIRTUUS

Minimally invasive Transplant Biomarker study: 450 pediatric kidney tx recipients prospectively in 12 sites (recruitment from Summer/Fall 2017)

WHY U.S. National Library of Medicine ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03719339 Home > Search Results > Study Record Detail Recruitment Status ①: Recruiting First Posted ①: October 25, 2018 Last Update Posted ①: October 1, 2019 VIRTUUS Children's Study (VIRTUUS) See Contacts and Locations

Sponsors and Collaborators

Children's Hospital of Philadelphia

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

Investigators

Principal Investigator: Brendan Keating, DPhil Children's Hospital of Philadelphia and Hospital of The University of Pennsylvania

Bridging Pediatric & Adult Therapeutics: VIRTUUS

Whole Urinary metabolite screening of Kidney Tx Patients

Additional Sites

- > UPenn, USA
- Samsung, Korea
- BIOMARGIN (EU)*
- > HdR, Sao Paulo Brazil
- King Faisal, Riyadh
- Univ Med Vienna,
- DeKAF

Pending Sites

- GOSH, London
- Temple St. Dublin,

Using Mass Spec to detect metabolites in blood & urine

Contrepois K, Jiang L, Snyder M. Mol & Cell Proteomics 2015

Single cell RNA-sequencing

- High GEM fill ratio (~90% of droplets contain beads)
- Poisson loading of cells into GEMs
- Beads dissolve for efficient, liquid phase biochemistry

Urinary cells in patient presenting 40 days prior to acute rejection diagnosis

Liver Transplant: cf-miRNA for detection of Acute Rejection & reducing immuo-suppressants

Can we use minimally invasive biomarkers to diagnoses subclinical liver transplant rejection?

Can we personalize Immunosuppression dosing to minimize sideeffects while preserving suppression of immune system?

NIH prospective study samples available 1. NIH CTOT-03 Trial: (NCT-00531921) Prospective trial profiling pro-inflammatory and rejection biomarkers

2. NIH/ITN A-WISH study (NCT-00135694)

- Phase 2 interventional Trial (initial recruitment of 250 liver tx recipients)

A-WISH: Post-Transplant Immunosuppression reduction

- > 1 year post-transplant:
 - 50% of patients were kept on standard immunosuppression (IST)
 - other 50% had immunosuppression reduced by 25% every 10 weeks
- Liver biopsies at 12, 24 & 36 months & blood collected every 3 months

Longitudinal trajectory of 2-miRNA ACR signature as a function of time prior to rejection

- Combined discovery & replication sets (n= 37 ACR & 93 non-ACR)

- 752 miRNAs assessed per sera sample (Exiqon)
- 31 miRNAs associated with ACR after replication (FDR p < 0.005)

Regression -> 2 miRNAs for ACR signature (hsa-miR-483-3p & hsa-miR-885-5p) - Ability to differentiate ACR vs nonACR: AUC=0.895 (95%CI=0.84-0.95)

- 92.6% sensitivity & 84.2% specificity (p=0.0001) PPV 0.72; NPV 0.93

(Hepatology 2017 PMID: 27533743)

miRNA guided detection of rejection & immunosuppression therapy minimization vs standard of care in Liver Tx

Integrative personal omics profiling (iPOP)

Integrative personal omics profiling (iPOP)

Chen et al Cell 2013 PMID: 22424236 and Li-Pook-Than et al., 2013
Barriers to Adoption

- Relieve burden of PGx CDS & implementation from physician
 - Compelling evidence exists for TPMT clinical utility
 - Assays, GI guidelines & billing codes in place BUT only 20% of assays are actually performed.

Acknowledgements

UPenn Claire Fishman Nik Nair Diego Morales Hui Gao Mila Muraveika David Walls Taisa Kohut

Andrew Zhu Dante Varotsis Yun Rose Li Maede Mohebnasau

Stanford: Brian Piening Mike Snyder

Eunice Kennedy Shriver National Institute of Child Health and Human Development Health research throughout the lifespan

National Institute of Allergy and Infectious Diseases

Genomics/Omics/Analysis

Jessica van Setten Paul de Bakker PhD Cisca Wijmenga PhD Eric Schadt PhD Mike Snyder PhD Jason H. Moore, MS, PhD Barbara Stranger PhD Daniel MacArthur PhD Eli Stahl PhD Marylyn Ritchie PhD

Heart/Lung

Folkert W. Asselbergs MD, PhD
Kiran Khush MD
Nancy K. Sweitzer MD, PhD
Pablo Garcia-Pavia MD
Brendan Keating D.Phil
Jason D. Christie MD, MS
David Wilkes MD
Jolanda Kluin MD, PhD

Kidney Graham Lord MD, FRCP, PhD Ajay K. Israni, MD Stephan Bakker MD Kelly Birdwell MD

PGx Pamala Jacobson PharMD

HLA/Bone Marrow

Paul de Bakker PhD Cisca Wijmenga PhD Richard Aplenc MD, PhD, MSCE John Levine MD Effie Petersdorf MD, PhD

Penn Transplant Institute Kim Olthoff Avi Shaked

Thank you!

M

bkeating@upenn.edu

www.igenetrain.org