

Update In Myeloma: Diagnosis, staging and Initial Treatment

Jonathan L. Kaufman, MD
Associate Professor Department of Hematology and Medical Oncology
Winship Cancer Institute of
Emory University

Updated IMWG Criteria for Diagnosis of Multiple Myeloma

MGUS

- M-protein < 3 g/dL
- Clonal plasma cells in BM < 10%
- No myeloma defining events

Smoldering Myeloma

- M-protein ≥ 3 g/dL (serum) or ≥ 500 mg/24 hrs (urine)
- Clonal plasma cells in BM ≥ 10% 60%
- No myeloma defining events

Multiple Myeloma

Underlying plasma cell proliferative disorder

AND

 1 or more myeloma defining events including either:

✓≥ 1 **CRAB** feature(s)

OR

ó 1 Biomarker Driven

C: Calcium elevation (> 11 mg/dL or > 1 mg/dL higher than ULN)

R: Renal insufficiency (creatinine clearance < 40 mL/min or serum creatinine > 2 mg/dL)

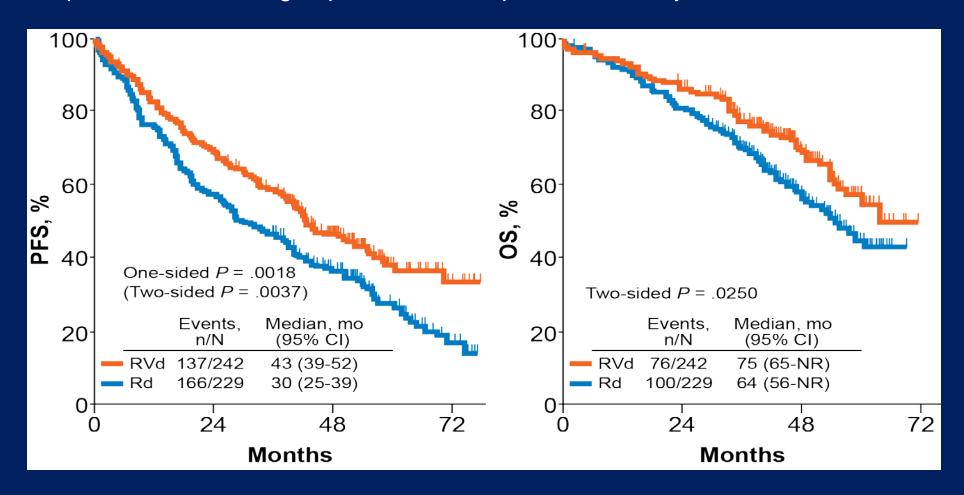
A: Anemia (Hb < 10 g/dL or 2 g/dL < normal)

B: Bone disease (≥ 1 lytic lesions on skeletal radiography, CT, or PET-CT)

Biomarker driven (1) Sixty-percent (≥60%) clonal PCs by BM; (2) serum free Light chain ratio involved:uninvolved ≥100; (3) >1 focal lesion detected by MRI

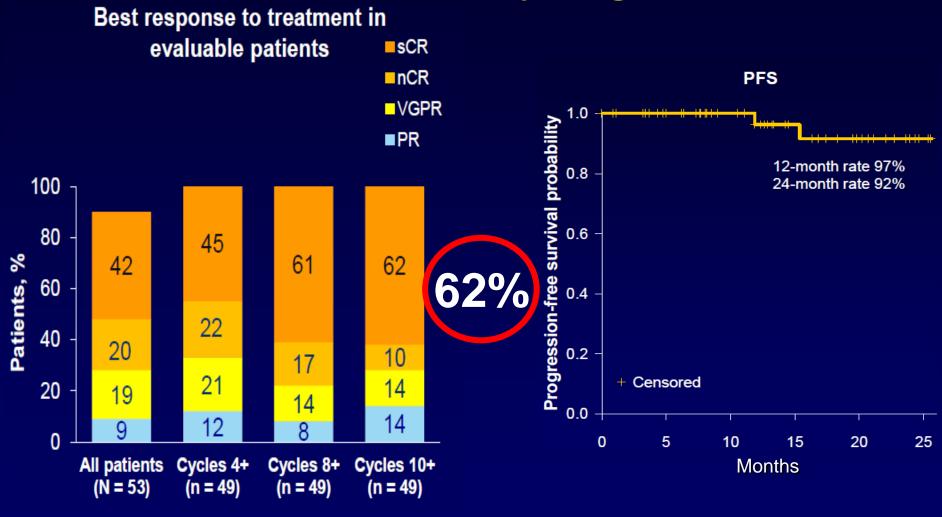
Revised ISS staging

Table 1. Standard	Risk Factors for MM and the R-ISS						
Prognostic Factor	Criteria						
ISS stage							
1	Serum β_2 -microglobulin < 3.5 mg/L, serum albumin \geq 3.5 g/dL						
II	Not ISS stage I or III						
III	Serum β_2 -microglobulin ≥ 5.5 mg/L						
CA by iFISH							
High risk	Presence of del(17p) and/or translocation t(4;14) and/or translocation t(14;16)						
Standard risk	No high-risk CA						
LDH							
Normal	Serum LDH < the upper limit of normal						
High	Serum LDH > the upper limit of normal						
A new model for risk stratification for MM							
R-ISS stage	ICC attack I and attacked size CA by iFICH						
l l	ISS stage I and standard-risk CA by iFISH and normal LDH						
l II	Not R-ISS stage I or III						
III	ISS stage III and either high-risk CA by iFISH or high LDH						
Abbreviations: CA, chromosomal abnormalities; iFISH, interphase fluorescent in situ hybridization; ISS, International Staging System; LDH, lactate dehydrogenase; MM, multiple myeloma; R-ISS, revised International Staging System.							

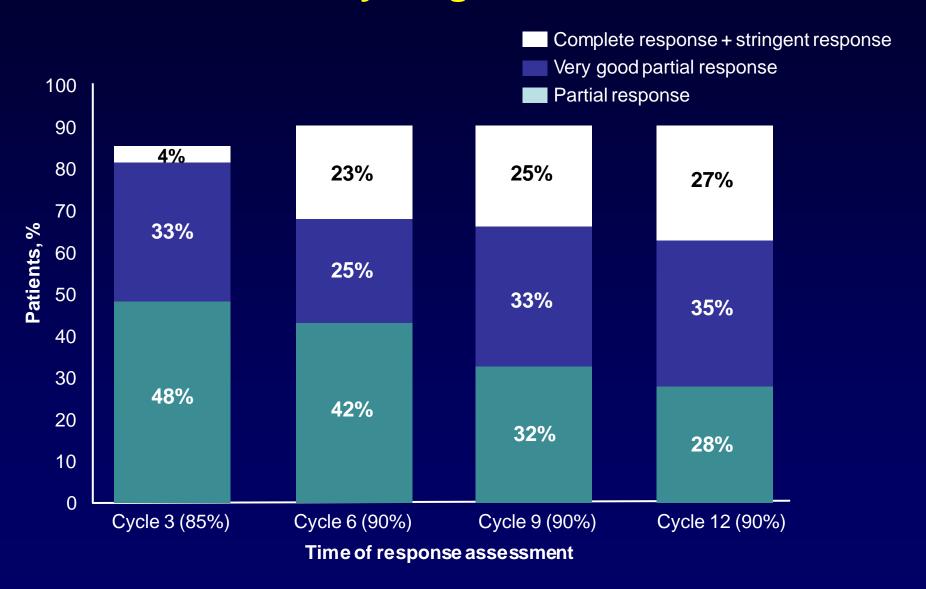


What Is the Current State of the Art?

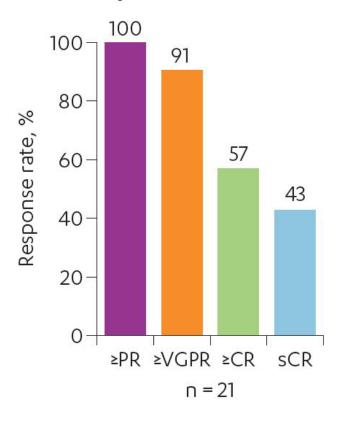
- Induction for younger patients
 - 3-drug induction followed by auto-transplant in first response
 - Maximize response post-transplant?
 - Maintenance therapy after auto-transplant
 - Intensified maintenance in high risk?
 - Goals of treatment now include trying to achieve MRD negativity


SWOG S0777 (N = 525): RVd Versus Rd¹

• **Initial therapy:** RVd for eight 21-day cycles vs Rd for six 28-day cycles in patients not intending to proceed to transplant, followed by Rd in both arms



Phase I/II KRd in Newly Diagnosed MM

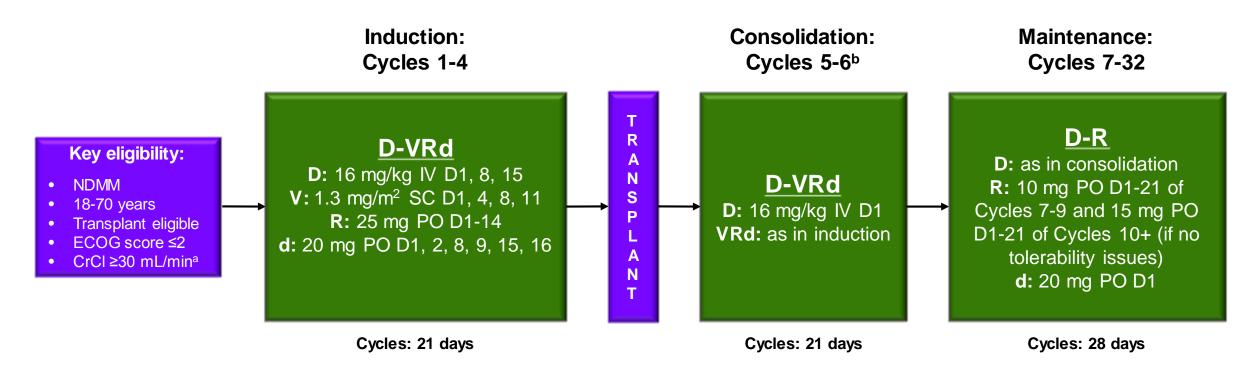


Ixazomib, Lenalidomide, and Dexamethasone in Newly Diagnosed MM¹

KRD-Dara ORRa,b

Best response

After a median follow-up of 16 months, the ORR was 100%, including 57% ≥CR and 91% ≥VGPR (Figure)

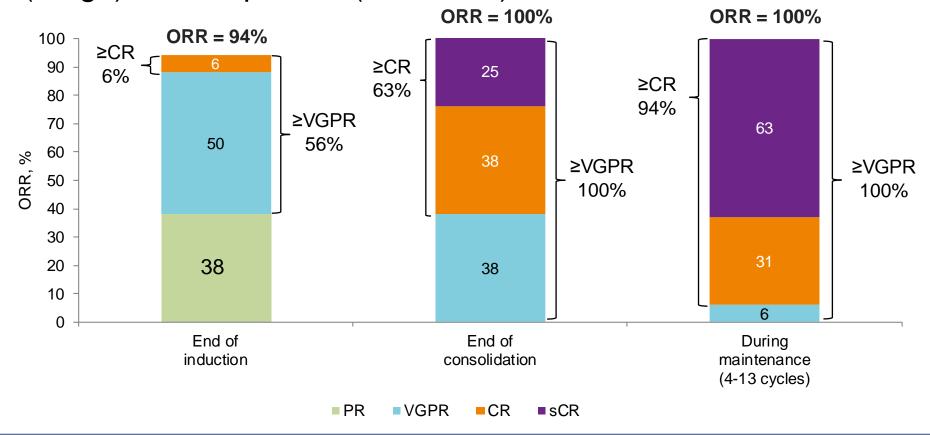

ORR, overall response rate; PR, partial response; VGPR, very good partial response; CR, complete response; sCR, stringent complete response.

Chari et al, ASH 2017

^aResponse-evaluable population.

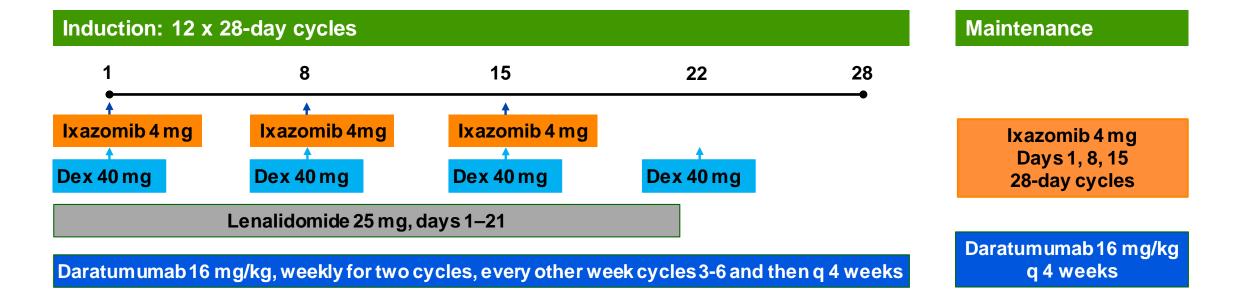
^bORR includes all responses ≥PR.

GRIFFIN: Safety Run-in Phase (N = 16)

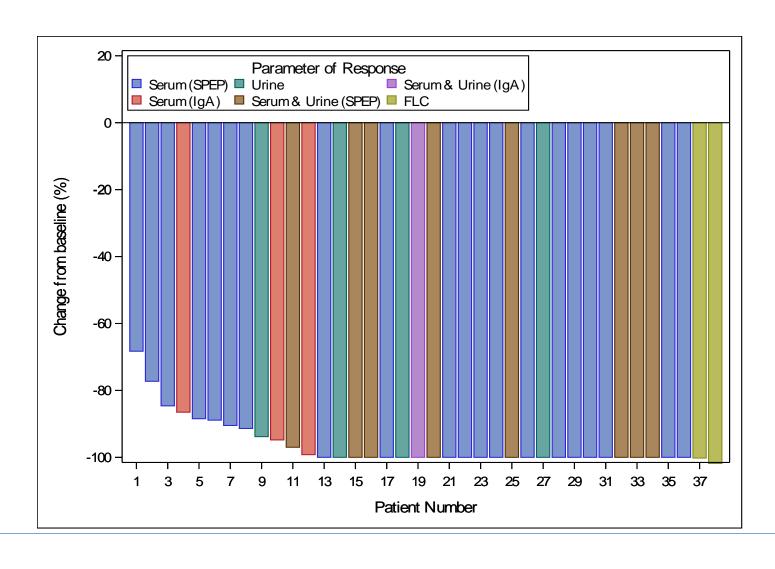

Patients who complete maintenance cycles 7-32 may continue single-agent lenalidomide thereafter

Safety run-in phase in 16 patients to assess dose-limiting toxicities during 1 Cycle of D-VRd

ECOG, Eastern Cooperative Oncology Group; CrCl, creatinine clearance; D, daratumumab; IV, intravenously; D, day; V, bortezomib; SC, subcutaneously; PO, orally; d, dexamethasone; D-R, daratumumab/lenalidomide; R, lenalidomide.

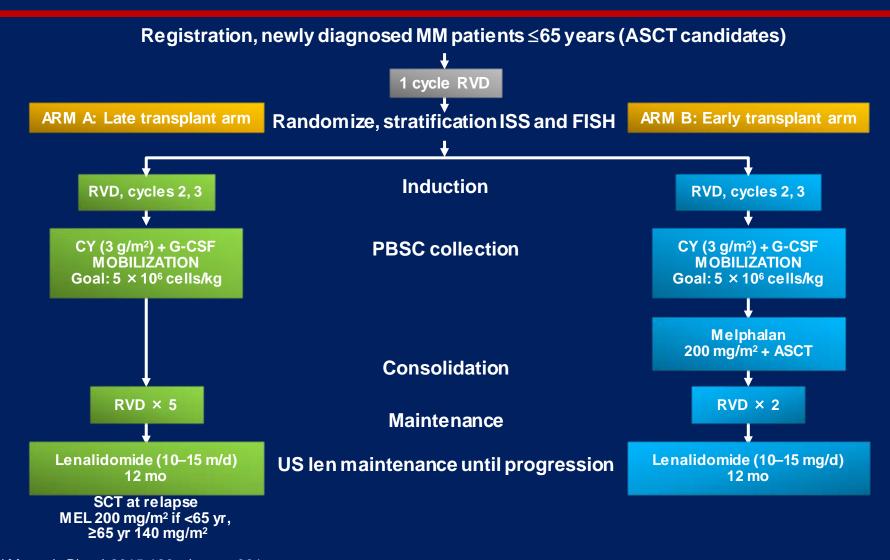

Efficacy: Investigator-assessed Response Rate

Median (range) follow-up: 16.8 (15.9-18.7) months


Responses continued to deepen over time

IRD-Dara Treatment schedule

- Standard infectious disease, bone, and thrombosis prophylaxis
- Treatment till progression or unacceptable toxicity or to a maximum of 3 years
- Stem cells could be collected after 4 cycles if SCT eligible


IRD-Dara Depth of response

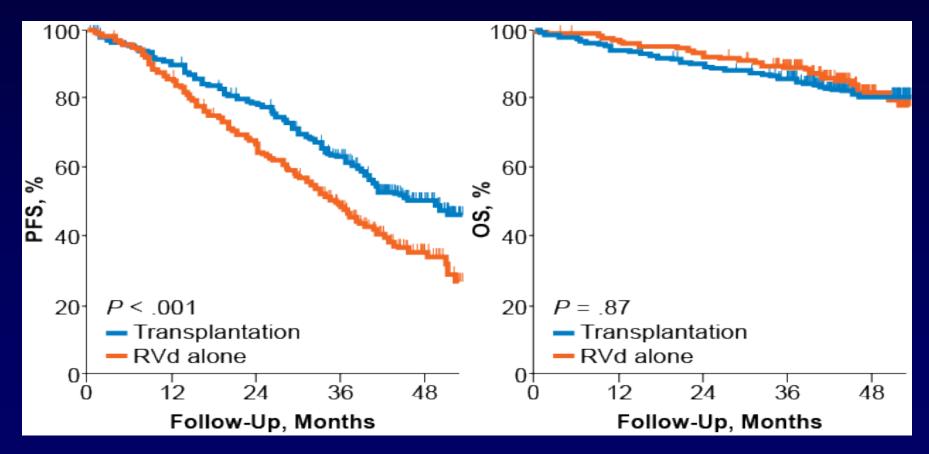
Aggressive Induction

- PI/IMID is standard
- Role of MOAB is emerging for newly diagnosed MM
- Choice of PI remains unclear, and may vary based on comorbid illness or ability to tolerate side effects
- Additional data on role of MOAB in younger patients in progress
- What remains the role of HDT?

Role of Transplant in 2019

IFM 2009: Response Increase

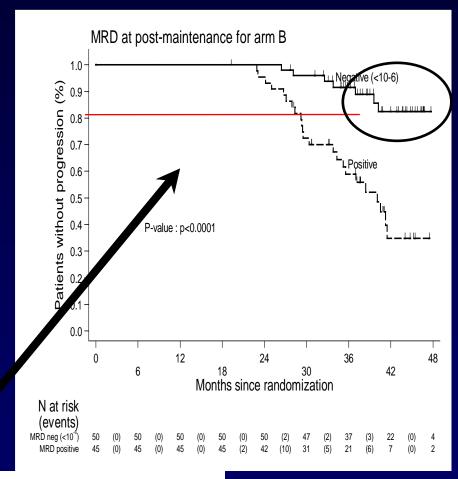
	RVD Arm N = 350	Transplant Arm N = 350	P Value
Post-induction, %	47	50	NS
Post-transplant or at C4, %	55	73	<.0001
Post-consolidation, %	71	81	<.006
Post-maintenance, %	78	88	<.001


IFM2009: RVd Alone Vs RVd + ASCT¹

RVd 1

RVd 2-3 → PBSC collection → RVd 4-8

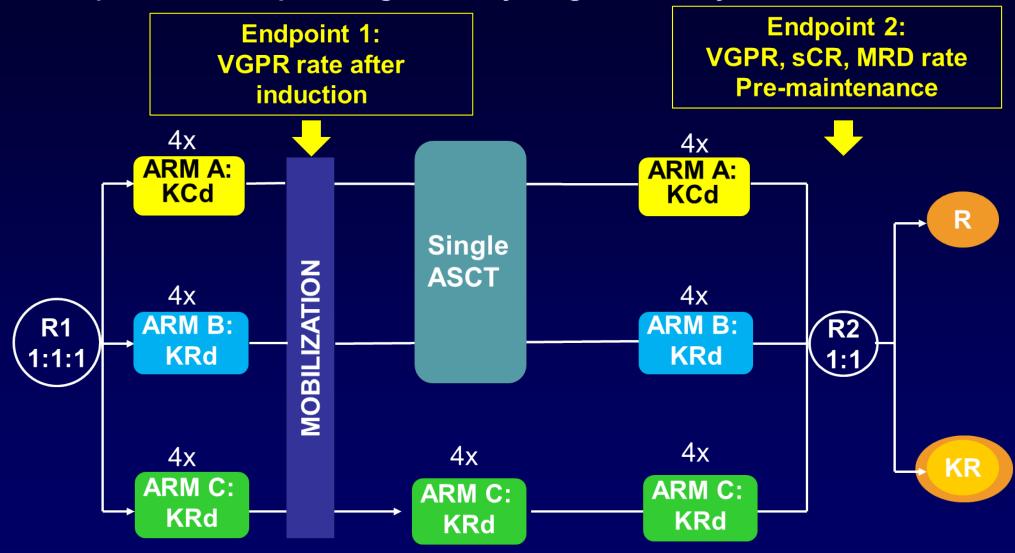
RVd 2-3 \rightarrow PBSC collection \rightarrow ASCT \rightarrow RVd 4-5


Lenalidomide 12 mo

Depth of response is more important than how you got there, but odds are better if you Transplant

Same depth of response resulted in same outcome regardless of treatment arm

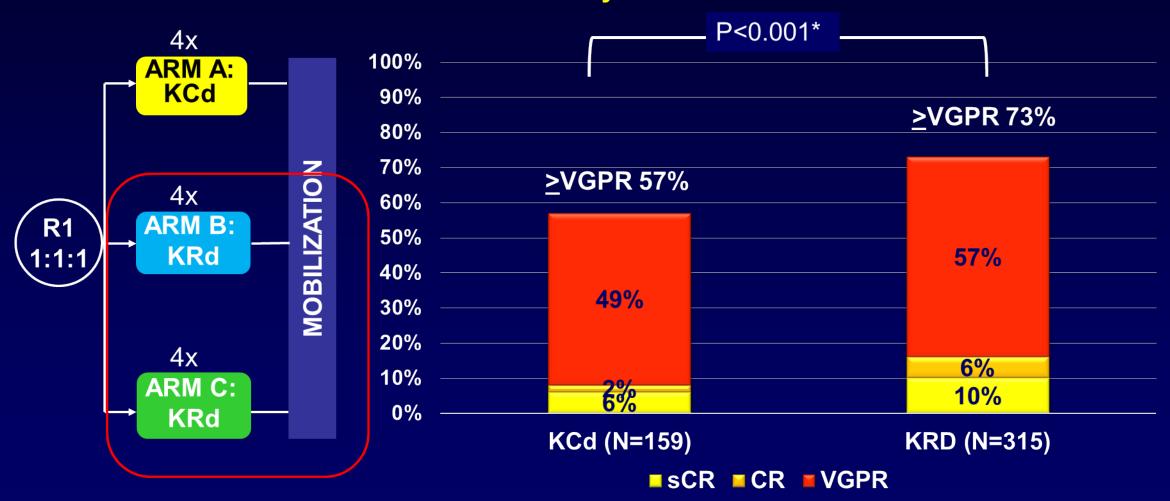
Carfilzomib-Lenalidomide-Dexamethasone (KRd) Induction-Autologous Transplant (ASCT)-KRd Consolidation vs KRd 12 Cycles vs Carfilzomib-Cyclophosphamide-Dexamethasone (KCd) Induction-ASCT-KCd consolidation: Analysis of the Randomized FORTE Trial in Newly Diagnosed Multiple Myeloma (NDMM)


Francesca Gay¹, Chiara Cerrato¹, Delia Rota Scalabrini¹, Monica Galli¹, Angelo Belotti¹, Elena Zamagni¹, Antonio Ledda¹, Mariella Grasso¹, Emanuele Angelucci¹, Anna Marina Liberati¹, Patrizia Tosi¹, Francesco Pisani¹, Stefano Spada¹, Ombretta Annibali¹, Anna Baraldi¹, Paola Omedé¹, Piero Galieni¹, Rita Rizzi¹, Norbert Pescosta¹, Sonia Ronconi¹, Donatella Vincelli¹, Anna Maria Cafro¹, Massimo Offidani¹, Antonio Palumbo², Pellegrino Musto¹, Michele Cavo¹, Mario Boccadoro¹.

1 GIMEMA / European Myeloma Network, Italy; 2 University of Torino - Currently Takeda Pharmaceuticals Co.

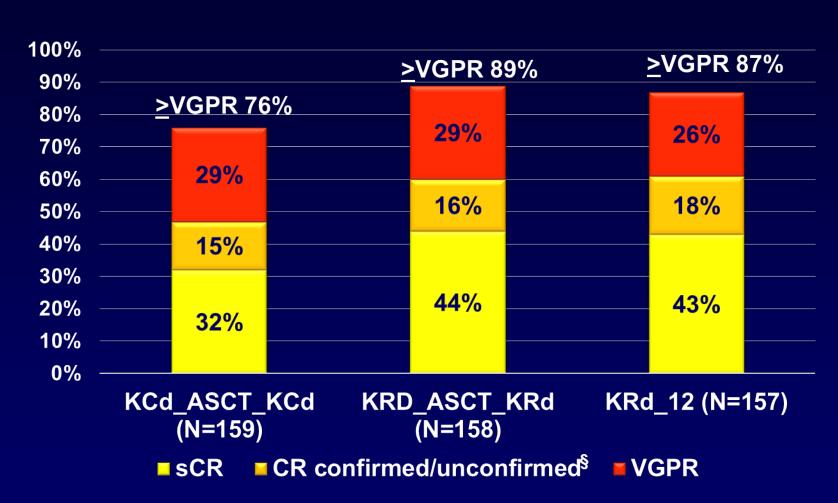
Correspondence: fgay@cittadellasalute.to.it

Trial Design


NDMM patients, transplant eligible and younger than 65 years

R1: randomization1; KCd: Carfilzomib, Cyclophosphamide, dexamethasone; KRd: Carfilzomib, Lenalidomide, dexamethasone; ASCT: Autologous Stem Cell Transplant; R2: randomization2; R: Lenalidomide; KR: Carfilzomib, Lenalidomide. NDMM, newly diagnosed multiple myeloma; ; VGPR: very good partial response; sCR, stringent complete response; MRD, minimal residual disease.

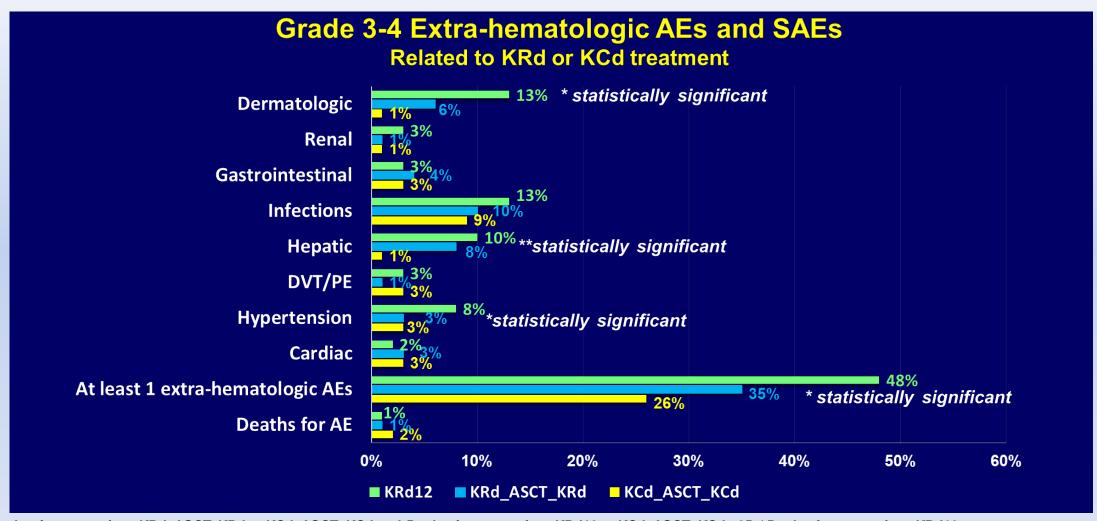
Induction Phase


Endpoint 1: VGPR rate with KRd vs KCd induction ITT analysis

R1: randomization1; KCd: Carfilzomib, Cyclophosphamide, dexamethasone; KRd: Carfilzomib, Lenalidomide, dexamethasone; sCR: stringent complete response; CR: complete response; VGPR: very good partial response; *adjusted for International Staging System Stage, FISH analysis and age

Response Rate pre-maintenance

ITT analysis



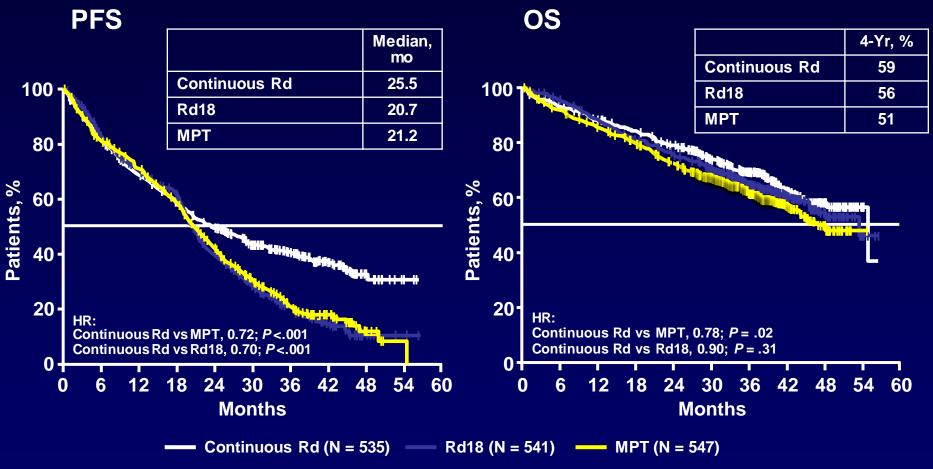
	OR	P value*
≥VGPR		
KRd-ASCT-KRd vs KCd-ASCT-KCd	2.53	0.004
KRd12 vs KCd- ASCT-KCd	2.11	0.015

§Unconfirmed CR/sCR: patients missing immunofixation/sFLC analysis needed to confirm CR/sCR (6% in KCd_ASCT_KCd; 8% in KRd_ASCT_KRd; 6% KRd_12)
KCd: Carfilzomib, Cyclophosphamide, dexamethasone; KRd: Carfilzomib, Lenalidomide, dexamethasone; ASCT, Autologous Stem Cell Trasplant; sCR: stringent Complete

Response; CR: Complete Response; VGPR: Very Good Partial Response; ITT: intention to treat; OR: Odds Ratio; * Adjusted for ISS, Age, FISH, LDH.

Safety

^{**}P-value for comparison KRd_ASCT_KRd vs KCd_ASCT_KCd and P-value for comparison KRd12 vs KCd_ASCT_KCd<.05; *P value for comparison KRd12 vs KCd_ASCT_KCd<.05.


AE, adverse events; DVT, deep vein thrombosis; PE, pulmonary embolism; SAEs, serious AE Gay F, et al. *Blood.* 2018;132: Abstract 121.

Induction and Transplant

- Three drugs are the standard
- PI/IMiD/Dex is the standard (B vs C vs I)
- Addition of a fourth drug for limited duration is a goal; will most likely be mAb (Dara, Elo, etc)
- Transplant continues to improved outcomes
- Maintenance is advised
- CR/MRD is a goal

FIRST Trial: Progression-Free Survival and Overall Survival Best With Continuous Therapy

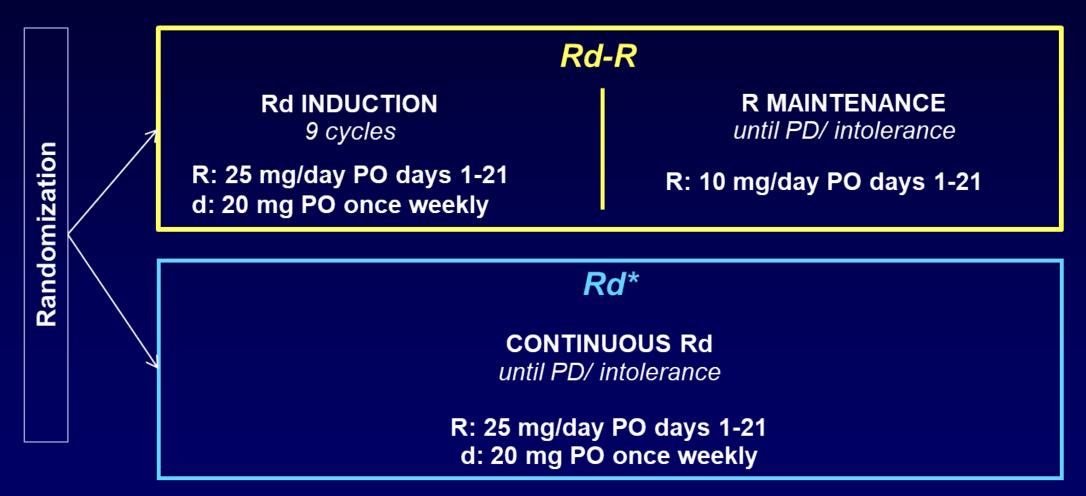
Median follow-up of 67 months as of 21 January 2016

MPT, melphalan, prednisone, thalidomide; Rd, lenalidomide plus low-dose dexamethasone; Rd18, lenalidomide plus low-dose dexamethasone for 18 cycles.

Benboubker L, et al. N Engl J Med. 2014;371:906-917.

Efficacy and Feasibility of Dose/Schedule-Adjusted Rd-R Vs. Continuous Rd in Elderly and Intermediate-Fit Newly Diagnosed Multiple Myeloma (NDMM) Patients: RV-MM-PI-0752 Phase III Randomized Study

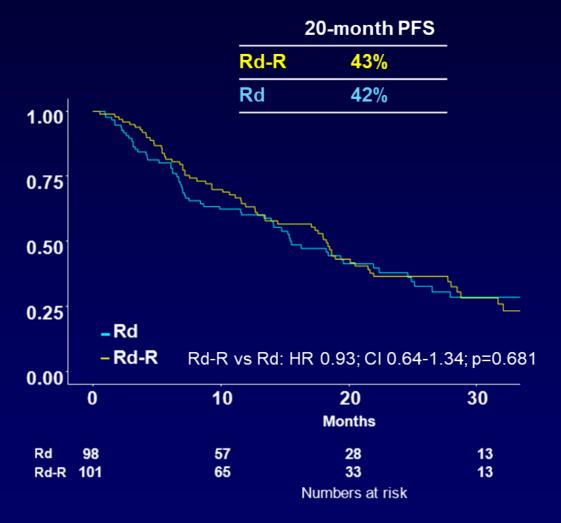
Alessandra Larocca, 1 Marco Salvini, 1 Lorenzo De Paoli, 1 Nicola Cascavilla, 1 Giulia Benevolo, 1 Monica Galli, 1 Vittorio Montefusco, 1 Tommaso Caravita di Toritto, 1 Anna Baraldi, 1 Stefano Spada, 1 Nicola Giuliani, 1 Chiara Pautasso, 1 Stefano Pulini, 1 Sonia Ronconi, 1 Norbert Pescosta, 1 Anna Marina Liberati, 1 Francesca Patriarca, 1 Claudia Cellini, 1 Patrizia Tosi, 1 Massimo Offidani, 1 Michele Cavo, 1 Antonio Palumbo, 2 Mario Boccadoro, 1 Sara Bringhen. 1

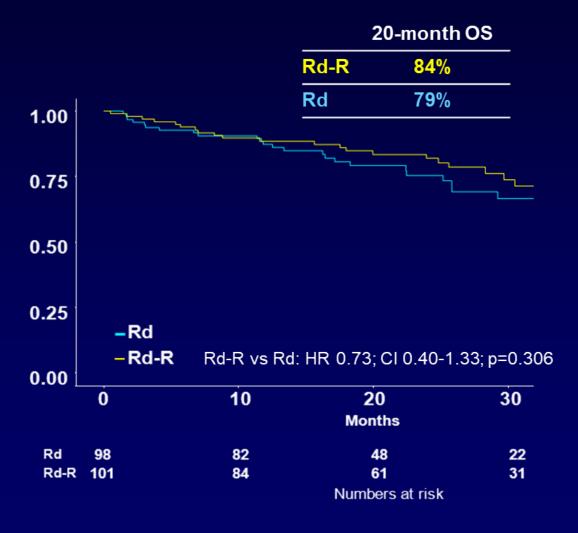

On behalf of Co-Investigators

1 GIMEMA / European Myeloma Network, Italy; 2 University of Torino - Currently Takeda Pharmaceuticals Co.

Correspondence: alelarocca@hotmail.com

Study design


199 intermediate-fit patients have been enrolled and could be evaluated

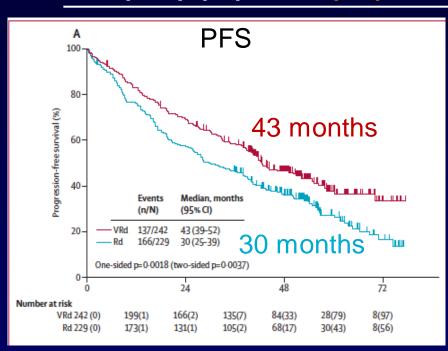

^{*}The dose and schedule of continuous Rd was the one adopted in patients >75 years in the FIRST trial (Hulin C et al. JCO 2016)

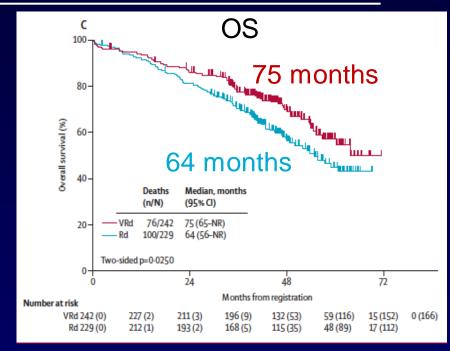
Rd-R vs Rd

Progression-free survival

Overall survival

R, Lenalidomide; d, dexamethasone; PFS, progression-free survival, OS, overall survival.


VRd vs Rd Followed by Rd Maintenance: SWOG S0777 Study


VRd (8 cycles) or Rd (6 cycles) induction, followed by Rd maintenance until PD, bortezomib twice a week IV x 8 cycles

ORR (CR) (%): 82 (16)

VS

72 (8)

SWOG study was not specifically conducted in elderly patients with newly diagnosed MM

AE: 82% vs 75%; discontinuations: 23% vs 10% *Peripheral neuropathy (33%)*

Median (range) age = 63 (28 to 87) years Age \geq 65 years = 43% ISS stage III = 33%; creatinine \geq 2 mg/dL = 5%

Multivariate analysis: VRd, stage III, and >65 years

>65 years; PFS: 36.9 months vs 25.9 months;

OS: 74.6 months vs 58.4 months

ORR: 74% vs 69%% VGPR: 57% vs 34%

Durie BG, et al. *Lancet.* 2017;389(10068):519-527.

RVD-Lite¹

35-day cycle of

Lenalidomide

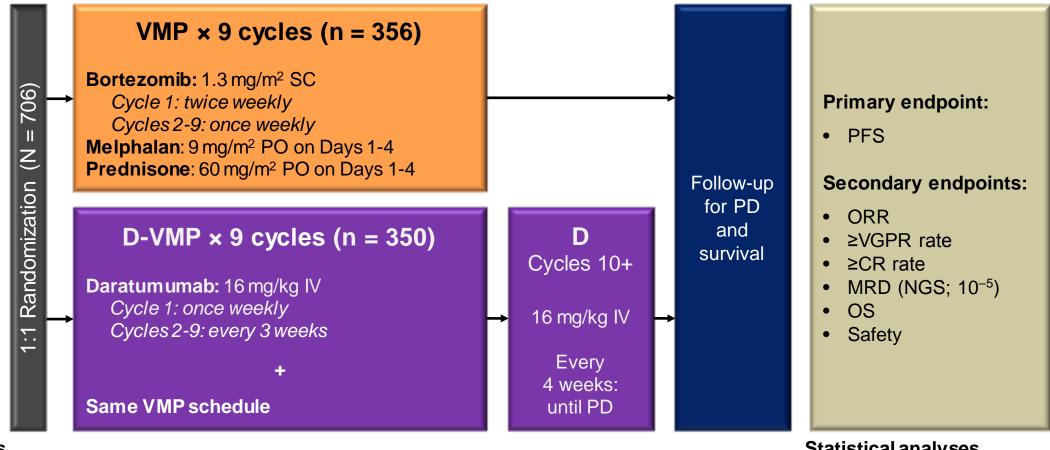
• 15 mg/day on days 1-21

Bortezomib

1.3 mg/m² once weekly SC on days 1, 8, 15, and 22; and

Dexamethasone

20 mg on days 1, 2, 8, 9, 15, 16, 22, and 23 for patients ≤75 years, and days
 1, 8, 15, and 22 for patients older than 75 years


Response After 4 Cycles (N = 30)	N (%)
ORR (≥PR)	27 (90.0)
CR	5 (16.7)
VGPR	11 (36.7)
PR	11 (36.7)
SD	3 (10.0)
≥VGPR	16 (53.3)

1. O'Donnell EK, et al. ASH 2014. Abstract 4217.

ALCYONE Study Design

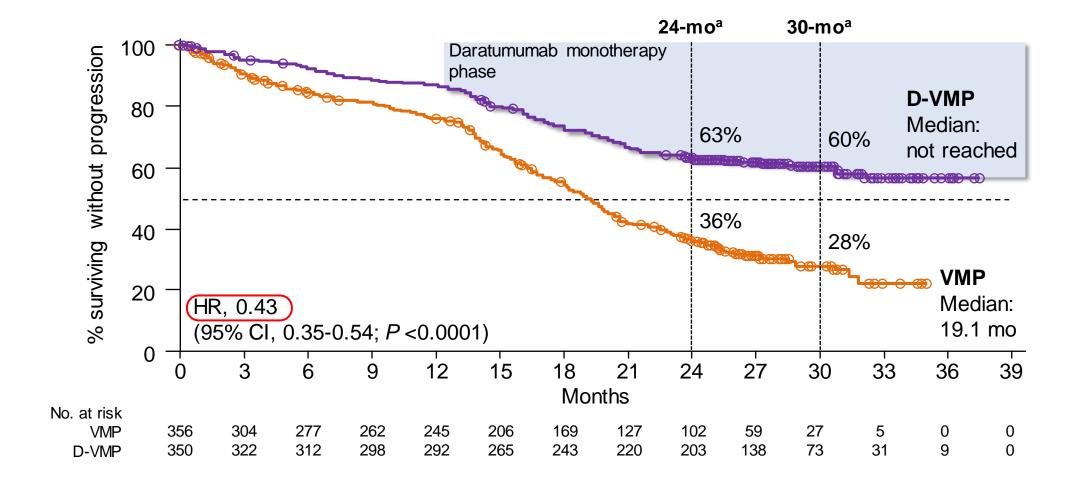
Key eligibility criteria:

- Transplantineligible **NDMM**
- ECOG 0-2
- Creatinine clearance ≥40 ml /min
- No grade ≥2 peripheral neuropathy or grade ≥2 neuropathic pain

Stratification factors

- ISS (I vs II vs III)
- Region (EU vs other)
- Age (<75 vs ≥75 years)

- Cycles 1-9: 6-week cycles
- Cycles 10+: 4-week cycles

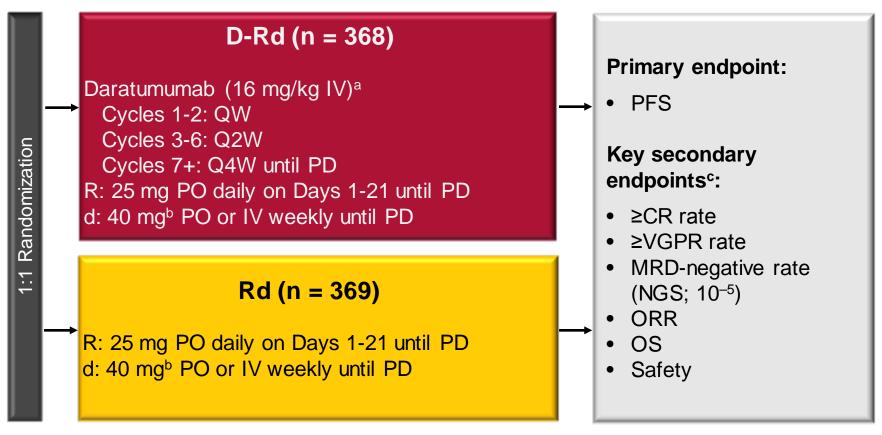

Statistical analyses

360 PFS events: 85% power for 8-month PFS improvementa

Efficacy: PFS

Median (range) follow-up: 27.8 (0-39.2) months

Efficacy: PFS in Prespecified Subgroups


	D-VMP		\	VMP				D-'	VMP	V	MP		
		Median		Median					Median		Median		
	<u>n</u>	(months)	n	(months)		HR (95% CI)		_n	(months)	n	(months)		HR (95% CI)
Sex					 		Baseline hepatic					 	
Male	160	30.9	167	18.9	₩	0.50 (0.37-0.68)	function					 	
Female	190	NE	189	19.8	₽	0.38 (0.28-0.52)	Normal	301	NE	303	19.4		0.45 (0.36-0.57)
Λαο					! !		Impaired	46	NE	52	13.5	H 	0.41 (0.23-0.72)
Age <75 years	246	NE	249	19.0	 ● 	0.41 (0.32-0.53)	ISS staging						
	246				i	` ,	I	69	NE	67	24.7	⊢● →	0.47 (0.28-0.79)
≥75 years	104	32.2	107	20.1	₩ ;	0.51 (0.34-0.75)	II	139	NE	160	18.3	ı⊕ı	0.43 (0.31-0.60)
Race					i !		III	142	NE	129	18.2	₩Н	0.43 (0.31-0.60)
White	297	NE	304	19.3	M	0.46 (0.37-0.58)	Type of MM						
Other	53	NE	52	18.9	₩	0.32 (0.17-0.58)	lgG	207	NE	218	18.5	₩	0.41 (0.31-0.54)
Danien					; !		Non-IgG ^{a,b}	82	30.9	83	21.3	⊢● ─∣	0.58 (0.38-0.89)
Region			005	40.4	:	0.47 (0.00.0.00)	Cytogenetic risk						
Europe	289	NE	295	19.1	►	0.47 (0.38-0.60)	High risk	53	19.2	45	18.0	⊢	0.78 (0.49-1.26)
Other	61	NE	61	19.0	₩	0.28 (0.15-0.52)	Standard risk	261	NE	257	18.9		0.34 (0.26-0.45)
Baseline renal function (CrCl)					 		ECOG performance status						
>60 mL/min	200	NE	211	19.1	⊮ H	0.45 (0.34-0.60)	0	78	NE	99	20.1	₩	0.39 (0.25-0.62)
≤60 mL/min	150	NE	145	18.9	₩	0.42 (0.30-0.59)	1-2	272	NE	257	18.8	₩	0.45 (0.35-0.58)
				0	.0 1.	0 2.0					0.	0 1.0	2.0
	Favor D-VMP Favor VMP										Favor [D-VMP Fav	or VMP

MAIA Study Design

Phase 3 study of D-Rd vs Rd in transplant-ineligible NDMM (N = 737)

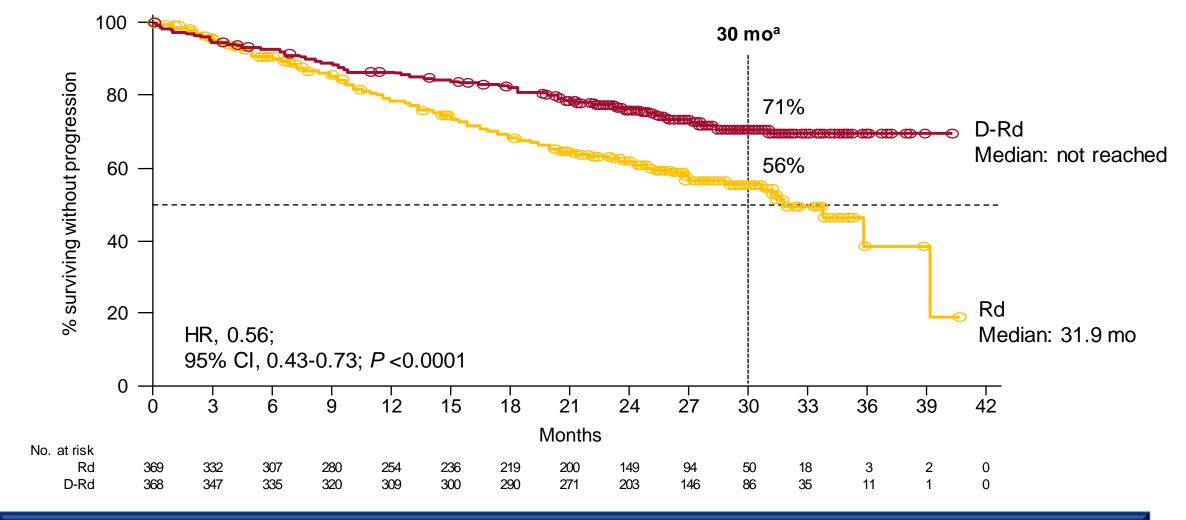
Key eligibility criteria:

- Transplantineligible NDMM
- ECOG 0-2
- Creatinine clearance ≥30 mL/min

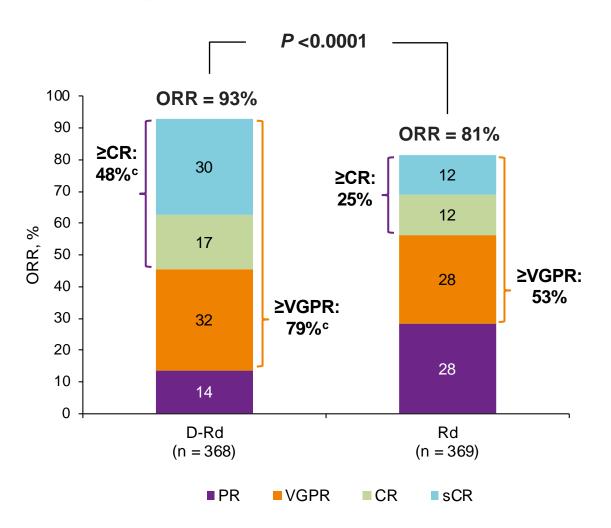
Stratification factors

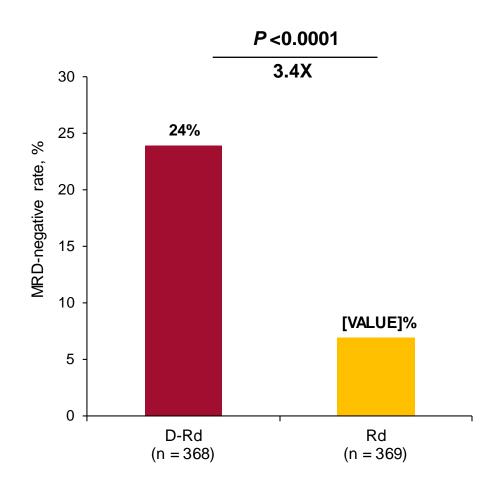
- ISS (I vs II vs III)
- Region (NA vs other)
- Age (<75 vs ≥75 years)

Cycle: 28 days

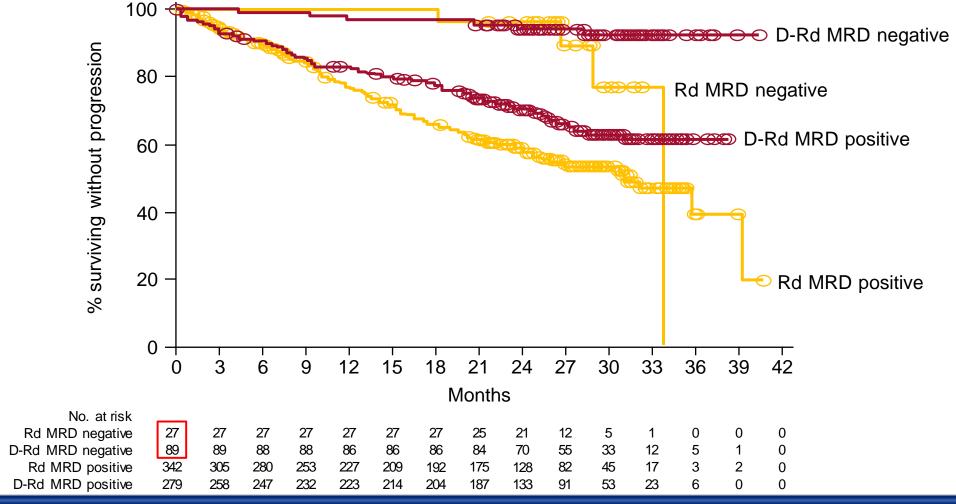

^aOn days when daratumumab was administered, dexamethasone was administered to patients in the D-Rd arm and served as the treatment dose of steroid for that day, as well as the required pre-infusion medication.

bFor patients older than 75 years of age or with BMI < 18.5, dexamethasone was administered at a dose of 20 mg weekly. cefficacy endooints were sequentially tested in the order shown.

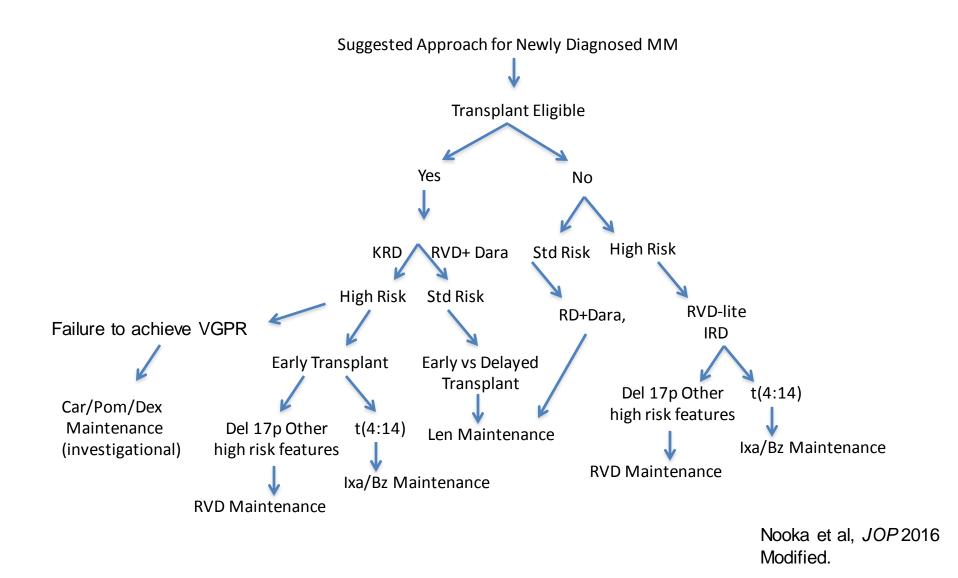

Efficacy: PFS


Median follow-up: 28 months (range: 0.0-41.4)

44% reduction in the risk of progression or death in patients receiving D-Rd


Efficacy: ORRa and MRDb (NGS; 10-5 Sensitivity Threshold)

Significantly higher ORR, ≥CR rate, ≥VGPR rate, and MRD-negative rate with D-Rd


Efficacy: PFS by MRD Status

- >3-fold higher MRD negativity achieved with D-Rd
- Lower risk of progression or death with MRD negativity

Efficacy: PFS in Prespecified Subgroups

	D-Rd	Rd	_	-		D-Rd	Rd	_	
	N	N		HR (95% CI)		N	N	_	HR (95% CI)
Sex					Baseline CrCl			:	
Male	189	195	I⊕I	0.65 (0.46-0.93)	>60 mL/min	206	227	₩	0.52 (0.36-0.74)
Female	179	174	₩	0.47 (0.32-0.69)	≤60 mL/min	162	142	H	0.60 (0.41-0.87)
Age					Type of MM				
<75 years	208	208	₩	0.50 (0.35-0.71)	lgG	225	231	ŀ⊕Ì	0.74 (0.53-1.03)
≥75 years	160	161	l ● l	0.63 (0.44-0.92)	Non-IgG	74	76	 	0.32 (0.18-0.55)
Race					Cytogenetic risk				
White	336	339	l <mark>⊕</mark> l	0.55 (0.42-0.72)	High risk	48	44	⊢∳⊢	0.85 (0.44-1.65)
Other	32	30	⊢⊕	0.68 (0.31-1.49)	Standard risk	271	279	₩	0.49 (0.36-0.67)
Region			i ! !		Baseline hepatic			į	
North America	101	102	₩	0.65 (0.41-1.04)	Normal	335	340	⊌¦	0.51 (0.39-0.68)
Other	267	267	₩	0.52 (0.38-0.71)	Impaired	31	29	 	1.08 (0.49-2.38)
ISS staging					ECOG score				
I	98	103	⊢⊕ ∄	0.59 (0.31-1.11)	0	127	123	ŀ●H	0.49 (0.29-0.81)
II	163	156	l⊕l	0.43 (0.29-0.64)	1	178	187	I⊕İ	0.63 (0.44-0.90)
III	107	110	ŀ●Ĥ	0.72 (0.48-1.09)	≥2	63	59	H	0.51 (0.29-0.89)
			 	1					
		C	0.1 1	10				0.1 1	10
		Favo	r D-Rd F	avor Rd			Fav	or D-Rd F	avor Rd

