Immunotherapy: Revolutionizing the Way We Treat Cancer

Michael R. Bishop, M.D. University of Chicago

Disclosures

- Honoraria
 - Celgene
- More important I am a transplanter

Immunotherapy: Revolutionizing the Way We Treat Cancer

- Rationale for immunotherapy in cancer
- Immunotherapy
 - Cytokines and Adoptive Immunotherapy
 - Vaccines
 - Monoclonal antibodies
 - Immune Checkpoint Blockade
 - Allogeneic cellular therapy
 - Chimeric antigen receptors

Cancer Immunotherapy Comes of Age

Cancer immunotherapy comes of age In Milmur¹, Gorge Costine² & Clean Densed⁴ Nature 2011

> Cancer immunotherapy comes of age Suzanne L. Topalian, George J. Weinner, and Drew J. Pardoll 2011

Cytokines and Adoptive Immunotherapy

Rosenberg and Adoptive Immunotherapy

- Biologic activity of interleukin-2 (IL-2) Rosenberg SA, et al. Science 1984; 223:1412-5.
- Lymphocyte Activated Lymphocytes (LAK):
 - Lytic cell population generated by incubation with IL-2
 - Rosenberg SA, et al. N Engl J Med 1985;313:1485-92.
- Tumor-Infiltrating Lymphocytes (TIL)
- Isolated from tumors and incubated with IL-2

Rosenberg SA, et al. Science 1986;233:1318-21.

HD IL-2 Therapy: Durable Responses

- HD IL-2 produces durable responses in 6% to 10% of patients with advanced melanoma or RCC
- Few relapses in patients responding for over 2.5 years (likely cured)
- FDA approval in 1992 (RCC) and 1997 (melanoma)

HD IL-2 Therapy in Melanoma and RCC

- High-dose IL-2 appears to benefit patients:
 - Toxic
 - Impractical: must be delivered as an inpatient procedure
- Use remains limited to selected patients treated at experienced centers
- Efforts to develop more tolerable regimens unsuccessful
- Efforts to better select patients who might benefit from HD IL-2 therapy have produced modest advances
- Proof of principle that immunotherapy can produce durable 0 benefit in patients with cancer, but newer immunotherapies are needed

Selected Autolgous T Cell Therapy In **Metastatic Melanoma** Systemic immunosuppression: Cyclophosphamide plus Fludarabine nged pers

300

The Structure of Antibodies

Rituximab Targets CD20 Specifically Expressed on The Surface of B Cells

Monoclonal Antibody Therapy for Cancer

FDA approved:

Rituximab	anti-CD20	lymphoma
Herceptin	anti-her2/neu	breast cancer
Myelotarg	anti-CD33	AML
Campath	anti-CD52	CLL
Zevalin	⁹⁰ Y anti-CD20	lymphoma
Bexxar	¹³¹ I anti-CD20	lymphoma

- 4 distinct response patterns associated with favorable OS:
 - Response in baseline lesions (typical RECIST response)
 - Stable disease with slow decline in tumor volume
 - Response following an initial increase in tumor volume
 - Response following the appearance of new lesions
- Infiltration of patient immune cells can cause an initial increase in tumor volume or appearance of new lesions on imaging scans (pseudoprogression)
 Wolchok JD, et al. Clin Cancer Res. 2009;15:7412-7420.

Cancer Vaccines: Current Status

- Many promising phase II studies compared to historical controls:
 - Whole-cell vaccines: allogeneic melanoma cells/cell lysates
 - Tumor antigen directed: MAGEA3, MUC1
 - Manipulated oncolytic virus: T-VEC
- Failure to show survival benefit in Phase III trials
- Only approved cancer vaccine: Sipuleucel-T in prostate cancer^[1]
- Encouraging results with T-Vec in melanoma^[2]
 Di Lorenzo G, et al. BJU Int. 2012;110:E99-104. 2. Kaufman HL, et al. ASCO 2014. Abstract 9008a.

Phase III Trial of Sipuleucel-T Immunotherapy in mCRPC (IMPACT): Overall Survival

Immune Checkpoint Blockade

Tumor-Derived Immune Suppression

- Tumors go to great lengths to evade the immune response
- Systematic studies have identified multiple mechanisms cancers employ to defeat the immune response
 - Immunosuppressive cytokines: TGF-β, IL-4, -6, -10
 - Immunosuppressive immune cells: T-regs, macrophage
 - Disruption of immune activation signaling: loss of MHC receptor, IDO production
- Goal: therapy strategies that "*liberate*" underlying anticancer immune responses
- Immune checkpoints not even in the picture in 2008

Weiner LM. N Engl J Med. 2008;358:2664-2665.

Clinical Development of Inhibitors of PD-1 Immune Checkpoint

	Target	Antibody	Molecule	Development stage	
	PD-1	Nivolumab (BMS-936558)	Fully human IgG4	Phase III multiple tumors (melanoma, RCC, NSCLCa, HNSCC)	
		Pembrolizumab (MK-3475)	Humanized IgG4	Phase I-II multiple tumors Phase III NSCLC/melanoma	
		Pidilizumab (CT-011)	Humanized IgG1	Phase II multiple tumors	
		MEDI-4736	Engineered human IgG1	Phase I-II multiple tumors	
	PD-L1	MPDL-3280A	Engineered human IgG1	Phase I-II multiple tumors Phase III NSCLC	
		MSB0010718C	Fully human IgG1	Phase I solid tumors	

Nivolumab: Clinical Activity							
Tumor Type	Dose, mg/kg	ORR (CR/PR), n (%)	SD ≥ 24 Wks, n (%)	Median PFS, Mos	Median OS, Mos	1 yr, %	2 yr, %
MEL (n = 107)	0.1-10	32 (34)	7 (7)	3.7	17.3	68	48
NSCLC (n = 129)	1-10	22 (17)	13 (10)	2.3	9.9	42	24
RCC (n = 34)	1 or 10	10 (29)	9 (27)	7.3	> 22	70	50
 28 responses (16 MEL, 6 RCC, and 6 NSCLC) lasted ≥ 1 yr among 54 patients with treatment initiation ≥ 1 yr before data analysis 							54

 13 patients (4 MEL, 6 NSCLC, 3 RCC) demonstrated nonconventional patterns of response but were not included as responders

Topalian SL, et al. N Engl J Med. 2012;366:2443-2454. Hodi FS, et al. ASCO 2014. Abstract 9002. Brahmer JR, et al. ASCO 2014. Abstract 8112

Pembrolizumab: NSCLC Clinical Activity

	First-line ¹	Previously treated ²		
	PD-L1+ (n = 42)	PD-L1+ (n = 159)	PD-L1 – (n = 35)	
ORR*, %	26	23	9	
DCR*, %	64	42	31	
Median duration of response, wks	NR	31	NR	

*RECIST v1.1

• ~ 80% of screened patients in each study were PD-L1+

Among previously treated patients with NSCLC, ORR was 26% in current/former smokers and 9% in never smokers

1. Rizvi N, et al. ASCO 2014. Abstract 8007. 2. Garon E, et al. ASCO 2014. Abstract 8020.

Tumors Shown to Respond to Anti-PD1 or Anti-PD-L1 Therapy

- Melanoma
 - Pembrolizumab approved by FDA in September 2014
- RCC
- NSCLC
- Bladder
- Head and Neck cancer
- Lymphomas
- ???

CTLA-4 and PD-1/L1 Checkpoint Blockade for Cancer Treatment

Other Combinations with PD-1 Checkpoint Inhibitors

- Other coinhibitory pathways
 TIM-3, LAG-3, IDO
- Co- or immunostimulatory pathways
- OX40, 4-1BB, GITR, IL-2, IFN, IL-21
- Standard of care
 - Chemotherapy, TKI, VEGF inhibitor, XRT
- Cancer vaccines
- Cellular therapies
- Epigenetic therapy

Allogeneic Hematopoietic Stem Cell Transplantation

Allogeneic Hematopoietic Stem Cell Transplantation

- Only curative treatment for high-risk and recurrent hematologic malignancies
- Matched related donor (MRD) is preferred (8/8 match at HLA-A, -B, -C, and -DR)
- Only 25-30% have an HLA-matched sibling donor
- Matched unrelated donor (MUD) is next preferred
- White = 60%
- Black = 20%
- Other minorities = 20-45%
- Approximately 5,000 per year require an alternative donor

T Cell Engineering with Chimeric Receptor Antigens

Chimeric Antigen Receptors

Conclusions and Future Directions

- Various form of immunotherapy can produce durable antitumor responses in some patients with cancer
- Treatment of patients with immune checkpoint inhibitors can be different than with conventional therapies
- Chimeric antigen receptors T cells are highly effective in hematologic malignancies.
- Multiple Immune Inhibitory And Co-stimulatory Pathways In The Tumor Microenvironment Are Targets Of Therapeutic Manipulation By Antibodies Or Drugs
- Rationale For Combining Targeted Therapies With
 Adoptive Cell Transfer-based Immunotherapy