Crossing the 'Al chasm': moving from research into the clinic

Dominic King, MD, PhD

SVP, Center for Advanced Clinical Solutions OptumHealth

Financial Disclosures:

• Alphabet/Google stock provided as part of employee incentive program (left October 2020)

How can we improve patient safety and care quality?

My 'eureka' moments

Behavioral sciences

Improving decisions about health, wealth and happiness

THALER & SUNSTEIN

Digital health

Artificial intelligence

Deep learning revolution

5

In last decade, different forces powering AI systems have converged

Big data

Enhanced computing power

Better algorithms

Translating AI into production systems

© 2021 UnitedHealth Group. Any use, copying or distribution without written permission from UnitedHealth Group is prohibited.

The power of human + machine

Deep Blue and AlphaGo made humans better players, can Al have the same impact in healthcare?

Applying AI technology to healthcare challenges

Basic science	 Discovering new mechanisms for diagnosing and treating disease Genomics Protein folding and drug discovery
Clinicians	 Improve workflows and reducing medical errors Diagnostics and image interpretation – scans, pathology slides, ECGs, endoscopy Up-level generalists with AI powered superpowers to confidently manage a greater range of complex disease
Consumers	 Enable people to look after their own health needs Tracking including behavioral health At home health screening (e.g., atrial fibrillation)
Health systems	 Better manage scare resources, identify patients at risk Identify those at risks of (re)admission Reduce administrative complexity

Medical imaging: ophthalmology

Clinically applicable deep learning for diagnosis and referral in retinal disease. *Nature Medicine*

Problem

- Number of Americans with blindness or severe visual impairment set to double by 2050
- Eye imaging is becoming more complex and challenging to interpret

Results

- Detection able to detect dozens of eye conditions from OCT (3D eye scans) at level of world's leading experts
- Prediction In patients diagnosed with AMD in one eye, AI system predicts progression in second eye within a clinically actionable 6-month time window overcoming substantial interobserver variability

Health screening: breast cancer

International evaluation of an AI system for breast cancer screening. Nature

Problem

- Interpretation of mammograms is affected by high rates of false alarms and missed cases
- In many countries not enough radiologists to read images in a timely way particularly where 2 readers are used

Results

- False positive reduction 5.7% (US) and 1.2% (UK)
- False negative reduction 9.4% (US) and 2.7% (UK)
- Outperformed all human readers by an absolute margin of 11.5%
- Al system able to generalize from UK to US
- In simulated study able to reduce workload of 2nd reader by 88%

Electronic health record predictions: patient deterioration

A clinically applicable approach to continuous prediction of future acute kidney injury. *Nature*

Problem

- 11% of deaths in hospital follow a failure to promptly recognize and treat deteriorating patients
- Opportunity to enable earlier treatment if able to identify patients at risk of conditions like sepsis and acute kidney injury

Results

- >700k patients across 170 inpatient and 1000 outpatient VA sites
- Able to predict 90% of all patients subsequently requiring dialysis up to 48 hours before
- Provides confidence assessments and a list of clinical features most salient to each prediction

Extensible to health predictions outside of the home

13

From expert performance to identifying novel signals of disease

Article Published: 19 February 2018

Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning

 Multicenter Study
 > Lancet Digit Health. 2020 Jul;2(7):e358-e367.

 doi: 10.1016/S2589-7500(20)30108-4. Epub 2020 Jun 23.

A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study

In the last 5 years, lots of research papers have been published

Original Research | September 18, 2018

Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy

December 13, 2016

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs ORIGINAL ARTICLES

Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer

Article | Published: 17 September 2018

Classification and mutation prediction from nonsmall cell lung cancer histopathology images using deep learning

Letter | Published: 13 August 2018

Automated deep-neural-network surveillance of cranial images for acute neurologic events

Published: 25 January 2017

Dermatologist-level classification of skin cancer with deep neural networks

How Artificial Intelligence Could Transform Medicine

NEWS AND VIEWS · 14 MARCH 2018

Machine learning classifies cancer

NEWS · 30 NOVEMBER 2020

'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures Artificial Intelligence in Healthcare: the future is amazing

Al has yet to realize the "quadruple aim" at scale

real experience	Suboptimal outcomes	Poor experiences	High costs
-----------------	---------------------	------------------	------------

Delivering real-world impact with AI

Key challenges for delivering clinical impact with artificial intelligence.

The AI Chasm

The gulf between developing a scientifically sound algorithm and its use in any meaningful real-world applications

Scientific challenges v. real world problems

Considerations

- Prioritize meaningful business / clinical challenges that data can help drives us to – we know the pain points!
- Multidisciplinary team involved from project ideation through to deployment engineers, research scientists, clinicians, business, compliance

Al learns from the signals we provide

Considerations

- Define a data strategy from point of collection through to delivery within products
- Train, test and validate AI systems on representative data that reflects the populations we serve
- Seek to eradicate embedded bias in data collection that can extend existing inequalities and cofounders that lead to incorrect recommendations

Delivering AI into workflows and customer journeys is complex

The algorithm is only a $\frac{1}{2}$ of the challenge Monday - Friday :30am - 8:00pm

Considerations

- Products serve as the critical engagement layer between insights and users. Where are we surfacing insights and are the products AI ready
- Be cognizant of the range of socio-technical factors that are barriers to successful technology deployments
- Think about system redesign that AI can enable

Performance likely to be worse in the clinic

Opportunity

- Remarkedly little prospective validation of healthcare AI
- To be effective AI systems need to take account of all the challenges and edge cases seen in the clinic that may cause them to break
- Ensure prospective scrutiny once AI is 'released into the wild' particularly in new settings and populations

Build trust

Respond actively to concern and anxiety

Opportunity

- Assurances on privacy and security
- Transparency around data processing
- Rigorous quality control and regulatory compliance
- Engage and involve clinicians and customers involvement and engagement
- Follow new reporting guidelines for AI

Mindset shift from R&D \rightarrow impact

Al Community

Al for ALL

Get Started

Opportunity

- We're already building a strong Al community to share best practices
- Make it easy for teams to draw on curated data, reusable tools etc.
- Get teams working as close to real data as possible and thoughtful upfront around quality and compliance considerations

Core competencies in reimagining care delivery

- Insights
- Technology
- Clinical excellence