Duchenne Muscular Dystrophy: Utilizing Personalized Treatments and Addressing Health Disparities

ANN TILTON, MD
PROFESSOR OF NEUROLOGY AND PEDIATRIC
LSU HEALTH SCIENCES CENTER - NEW ORLEANS

Learning Objectives

• Describe Duchenne Muscular Dystrophy (DMD) and the interprofessional care that is necessary for optimal outcomes.
• Explain different emerging therapies and how to incorporate these considerations into a personalized treatment plan.
• Discuss the prevalence of DMD in different racial and ethnic groups.
• Address health disparities among individuals with DMD related to their socioeconomic status, residential geographic location and access to DMD centers.
• Recognize other environmental factors that impact outcomes for individuals with DMD.
Case Studies

- John is a 10 yr old with progressive weakness first noted at 3 yrs when he had stumbling

Parents report:
- Difficulty with stairs and rising from the floor
- Toe walking
- Pain in his calves
- School difficulties

What do you consider?
Progressive Dystrophies

- Dystrophinopathies
 - Duchenne Muscular Dystrophy (DMD)
 - 1 in 3300 live male births
 - Spontaneous mutation rate of 1 in 10,000
 - Significantly more prominent in white males
 - Black and Hispanic males were evaluated later
 - Implications for therapy and outcome
 - The personalized care is impacted
 - Becker’s Muscular Dystrophy (BMD)
 - 1 in 31,000 male births

Historical Background

- 1980 mapping led to the gene Xp21
- 1985 microscopic observable deletion at Xp21
Duchenne Muscular Dystrophy: Utilizing Personalized Treatments and Addressing Health

Dystrophinopathies

- DMD gene is the largest gene identified in humans
- 1% of the entire X chromosome
- Protein product was named Dystrophin

Dystrophinopathies

- The DMD gene’s product is dystrophin
 - Dystrophin is part of a protein complex

Figure from Up to date
Duchenne Muscular Dystrophy: Utilizing Personalized Treatments and Addressing Health

Dystrophinopathies

- **Dystrophin**
 - Mechanical stabilization of the plasma membrane
 - Dystrophin may allow the membrane to fold during contraction-relaxation

Diagnostics

- Creatine kinase is dramatically elevated
 - 20-200 x normal
 - Max at 3yr and drops 20% per year
- EMG/NCV
- Elevated AST and ALT
- Gene test
- Muscle biopsy
Duchenne Muscular Dystrophy: Utilizing Personalized Treatments and Addressing Health

Diagnostics

- Muscle biopsy — Dystrophin
- Western blot
 - Quantitate the amount of dystrophin

Clinical Presentation

- Duchenne Muscular Dystrophy
 - < 2 years gross motor delay
 - Mean age walking is 18 months
 - Clinically apparent at 3-4 years of age
 - Proximal weakness
 - Calf hypertrophy
 - (pseudo-hypertrophy)
Duchenne Muscular Dystrophy: Utilizing Personalized Treatments and Addressing Health

Clinical Presentation

- Proximal weakness
 - Anterior pelvic tilt
 - Lumbar lordosis
 - Pelvic girdle first

- Myopathic gait pattern
 - Trendelenburg

Clinical Presentation

- Neck flexor weakness
- Gowers’ sign
Clinical Presentation

- Neck flexor weakness
- Gower's sign
- 25% intellectually disabled
- Progressive deterioration

Clinical Presentation

- Motor System
 - Honeymoon phase 3-6 yrs (50% loss)
 - 6-13 yrs linear loss...
 levels again 14-15 yrs
Clinical Presentation

► Motor System
 ► What predicts loss of ambulation?
 ▶ If 12 sec or greater to walk 30 feet, then ambulation will be lost in 1 yr
 ► Wheelchair use?
 ▶ Untreated 7-13 yrs (10yr)
 ▶ >14 yrs consider BMD (or LGMD)

Clinical Presentation

► Progressive Disorder
 ► Scoliosis
 ▶ Prevalence varies 33-100%
 ▶ Correlates with age
 ▶ 50% by 15yr
 ▶ Progresses 11 to 42 degrees/yr
 ► Scoliosis is not caused by wheelchair use
 ▶ Both age and weakness related
Clinical Presentation

- Main distinction between DMD and BMD
 - Wheelchair dependency <12 years and >16 years

Symptom Management

- Progressive Disorder
 - Cardiac problems
 - 90% of patients abnormal EKG
 - Cardiomyopathy
 - 1/3 by 14 yrs and all >18 yrs
 - Echo-Left Ventricle
 - Milder forms-transplant
 - Cardiology Management
 - ACE inhibitors
Symptom Management

- Orthopedics
 - Stretching
 - AFO
 - Exercise
 - Scoliosis

Symptom Management

- Respiratory compromise
 - Questions
 - How do you sleep? Nightmares?
 - Headache? Day time sleepiness?
 - Pulmonary Colleagues
 - FVC 1-2x/yr
 - Non-invasive measures
 - Negative and positive pressure
Symptom Management

- GI (smooth muscle)
 - Intestinal hypo-motility
 - Obesity then malnutrition
- Osteoporosis
 - Abnormal while still ambulatory
 - Calcium and Vitamin D
 - IV bisphosphonates
 - DEXA
- Anesthesia reaction

Symptom Management

- Complex Care
 - Multiple systems involved
 - Social impact?
 - Cognitive deficits
 - Psychosocial factors such as anxiety or depression
 - Physical limitations and fatigue
 - Environmental barriers
 - Disparities based on ethnicity and socioeconomic status
 - This is predominantly Muscular Dystrophy Association (MDA) center based so access is an issue
Symptom Management

- Complex Care
 - Multidisciplinary Approach is needed
 - GOALS
 - Strength and function
 - Prevention and treatment of spinal deformity
 - Addressing of respiratory and cardiac needs
 - Optimal outpatient and home-based management
 - Improved quality of life and reduced:
 - Emergency care and hospitalizations
 - Transition of Care
 - Difficult in children with complex medical issues
 - MDA system (but availability issues)

Therapeutics

- Weakness and a role for exercise?
 - Recommend:
 - Submaximal low impact aerobic exercise
 - Not to cramping or exhaustion
 - Benefits
 - 20% increase in strength
 - Endurance
 - Fatigue
 - Well-being
Duchenne Muscular Dystrophy: Utilizing Personalized Treatments and Addressing Health

November 30, 2021

Therapeutics

- Glucocorticoids-Mainstay
 - Offer at 4 yrs and older
 - Prednisone (and deflazacort)
 - Strength increase 11% and maintained (10 days)
 - Independent ambulation 3.3 yrs longer
 - FVC improved
 - Reduces heart failure
 - Scoliosis risk 20% vs 92%
 - Remember side effects

Therapeutics

- Exercise
- Steroids
- Novel Therapies
 - Exon skipping
 - Gene therapy
 - Viral vectors
 - Myostatin inactivation
 - Myoblast transfer
 - Immune suppressants
Therapeutics

- **Novel Therapies**
 - Exon skipping
 - Gene Therapy
 - Viral Vectors
 - Myostatin inactivation
 - Myoblast Transfer
 - Immune suppressants

Therapeutics

- **Novel Therapies**
 - **Exon skipping**
 - Designed to increase the production of dystrophin
 - It is not certain that it results in clinical benefit
 - Include:
 - Eteplirsen (exon 51)-13%
 - Golodirsen (exon 53)-8%
 - Vilofencsen (exon 53)-8%
 - Casimersen (exon 45)-8%
 - Skip over part of the genetic code - exon
 - Allows the production of a shorter but functional dystrophin protein
Duchenne Muscular Dystrophy: Utilizing Personalized Treatments and Addressing Health

November 30, 2021

Dr. Ann Tilton

Therapeutics

<table>
<thead>
<tr>
<th>Medication</th>
<th>Exon Mutation</th>
<th>Ages</th>
<th>Delivery</th>
<th>Frequency</th>
<th>Cost per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exondys (Eteplirsen)</td>
<td>51</td>
<td>all</td>
<td>IV</td>
<td>Weekly</td>
<td>750,000</td>
</tr>
<tr>
<td>Vyondys (Golodirsen)</td>
<td>53</td>
<td>all</td>
<td>IV</td>
<td>Weekly</td>
<td>300,000</td>
</tr>
<tr>
<td>Viltelpso (Viltolarsen)</td>
<td>53</td>
<td>all</td>
<td>IV</td>
<td>Weekly</td>
<td>730,000</td>
</tr>
<tr>
<td>Amondys (Casimersen)</td>
<td>45</td>
<td>all</td>
<td>IV</td>
<td>Weekly</td>
<td>750,000</td>
</tr>
<tr>
<td>Emlaza (Deflazacort)</td>
<td>2 year plus</td>
<td>Oral</td>
<td>Daily</td>
<td></td>
<td>82,000</td>
</tr>
</tbody>
</table>

Exondys 51

Exon Skipping: Dystrophin Splicing With Exondys 51

Dr. Ann Tilton
Duchenne Muscular Dystrophy: Utilizing Personalized Treatments and Addressing Health

Stop codon
- Ataluren, Eteplirsen
 - Up to 15% of patients have a premature stop codon
 - Created by a nonsense mutation
 - Able to bypass the mutation and continue the translation codon
 - Functional protein

- Trial of 174 males – high, low and placebo
 - Low dose improved walking

Conclusion
There are more possibilities and many reasons for greater optimism